US3739944A - Automatic periodically actuated spray dispenser - Google Patents

Automatic periodically actuated spray dispenser Download PDF

Info

Publication number
US3739944A
US3739944A US00256733A US3739944DA US3739944A US 3739944 A US3739944 A US 3739944A US 00256733 A US00256733 A US 00256733A US 3739944D A US3739944D A US 3739944DA US 3739944 A US3739944 A US 3739944A
Authority
US
United States
Prior art keywords
valve
motor
contacting element
spray
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00256733A
Inventor
T Rogerson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CBS Corp
Original Assignee
Westinghouse Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Westinghouse Electric Corp filed Critical Westinghouse Electric Corp
Application granted granted Critical
Publication of US3739944A publication Critical patent/US3739944A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D83/00Containers or packages with special means for dispensing contents
    • B65D83/14Containers or packages with special means for dispensing contents for delivery of liquid or semi-liquid contents by internal gaseous pressure, i.e. aerosol containers comprising propellant for a product delivered by a propellant
    • B65D83/16Containers or packages with special means for dispensing contents for delivery of liquid or semi-liquid contents by internal gaseous pressure, i.e. aerosol containers comprising propellant for a product delivered by a propellant characterised by the actuating means
    • B65D83/26Containers or packages with special means for dispensing contents for delivery of liquid or semi-liquid contents by internal gaseous pressure, i.e. aerosol containers comprising propellant for a product delivered by a propellant characterised by the actuating means operating automatically, e.g. periodically
    • B65D83/262Containers or packages with special means for dispensing contents for delivery of liquid or semi-liquid contents by internal gaseous pressure, i.e. aerosol containers comprising propellant for a product delivered by a propellant characterised by the actuating means operating automatically, e.g. periodically by clockwork, motor, electric or magnetic means operating without repeated human input
    • GPHYSICS
    • G04HOROLOGY
    • G04FTIME-INTERVAL MEASURING
    • G04F3/00Apparatus which can be set and started to measure-off predetermined or adjustably-fixed time intervals with driving mechanisms, e.g. dosimeters with clockwork
    • G04F3/06Apparatus which can be set and started to measure-off predetermined or adjustably-fixed time intervals with driving mechanisms, e.g. dosimeters with clockwork with electric driving mechanisms

Definitions

  • a DC motor is directly coupled in positive relationship through a reduction gear train 52 us. c1. 222/70, 239/70 and a valve contacting elemem with a metering valve 51 1 Int. Cl B67d 5/08 Of an aerosol comaiher- A timihg circuit which Couples 53 Field of Search 222/70 76 504- a battery P mum to the DC motor delivers t odic power pulses to energize the motor and actuate the container valve. The spring return force in the valve returns the valve contacting element to its normal position at the end of each power pulse without requiring a disconnection of the positively coupled DC motor.
  • This invention relates to an apparatus for automatically and periodically discharging a metered quantity of spray from an aerosol container. More specifically, this invention relates to an automatic spray dispenser which is capable of operating off commonly available batteries for extremely long time periods.
  • Pressurized aerosol containers have achieved wide usage in dispensing materials such as deodorizers, insecticides, germicides and the like.
  • Such containers are commonly provided with an upwardly projecting valve having a spray nozzle.
  • the valve may beopened with downward pressure, or in some cases, by tilting the valve to one side.
  • the eccentric drive includes a ball which is driven between the ring and a drum to drive the ring against the valve to emit a burst of spray.
  • the ring is spring loaded so that upon reversal of the DC motor, as controlled by a separate reversing element, valve actuation is terminated.
  • the automatic aerosol dispensing devices shown in Klebanoff et a1. and Goldsholl et al. include mechanical elements which increase the complexity of the device. For example, the mechanical delays employed in both of these devices require, additional structural features which are rotated by the motor. Additional mechanical elements such as the cam in Goldsholl et al. or the eccentric ball mount in Klebanoff et al. are necessary to actuate the output valve of an aerosol container.
  • a spring loading feature employed in the Goldsholl et al. dispenser presents an additional undesired force which must be overcome during rotation of the motor and thus, demands additional energy from the power supply.
  • a motor may be employed which is continuously rotated on AC power. See for example, the automatic spray dispensers in Montgomery U.S. Pat. No. 3,018,056, Edelstein U.S. Pat. No. 2,928,573 and Kraus U.S. Pat. No. 2,613,108.
  • Periodically operated solenoids are employed in automatic aerosol dispensers as described in the U. S. patents to Gray No. 3,351,240 and Mangel No. 3,187,949.
  • an electronic timing circuit generates an output pulse which turns an electronic transistor switch on for a time period sufficient to energize a solenoid whose armature is moved to permit the emission of a burst of spray.
  • the armatures of the solenoids form an integral part of a modified valve. Such construction is complex and tends to demand excessive electrical power from limited power sources such as batteries.
  • a DC motor is positively coupled by a reduction gear train and a valve contacting element to the output valve of an aerosol container.
  • the valve contacting element which normally rests upon the output valve, depresses it upon motor actuation.
  • a timing circuit delivers pulses of electrical power from a battery power source to the motor. As the DC motor is rotated during a power pulse, the valve contacting element depresses the output valve which emits a measured burst of spray.
  • an automatic, self-powered spray dispensing device in accordance with the invention, a battery lifetime of the order of one year is obtained. This is obtained with a silent drive structure which presents a very low current drain each time the DC motor is actuated.
  • FIGS. 2 and 3 are each an enlarged frontal view of a valve-contacting element employed on an automatic spray dispenser shown in FIG. 1 and respectively show a normal and actuated position of the valve contacting element;
  • an automatic spray dispenser in accordance with the invention is shown mounted on a back door 12 ofa cabinet 14.
  • the cabinet 14 has an opening 16 through which a burst of spray from an aerosol container 18 can be discharged into a room.
  • the aerosol container 18 is supported on a ledge (not shown) to place its valve 20 beneath a retainer bracket 21 and a valve engaging element 22.
  • Valve 20 is of the metered type which, upon a downward movement of nozzle 24, emits a measured amount of spray through stem 25 and opening 27.
  • the amount of spray usually is of the order of 100 milligrams.
  • the valve nozzle 24 is spring loaded upwards so that a downward or inward force is needed to actuate the valve.
  • the valve motion needed to obtain a burst of spray is small and downward movement of the valve nozzle 24 is limited when its lower surface 26 contacts seat 28.
  • a self-powered automatic actuator 30 is used to depress valve 20 and includes a DC motor 32, a reduction gear train 34, an electric timing circuit 36 and a supply 38 of DC power in the form of a pair of series connected flashlight batteries.
  • the DC motor 32 and gear train 34 are mounted on a bracket 40, which is spaced from back door 12 by spacers 42, to locate the valve actuator 22 directly over nozzle 24, as shown.
  • the output pinion 52 engages a gear 54 rotatable about axis 55 and which gear is firmly affixed to the valve engaging element 22 or may form an integral part therewith.
  • the valve engaging element 22 has a contact edge 56 which is disposed to engage the top 58 of nozzle 24 when rotated counter-clockwise in the direction of arrow 60.
  • FIG. 2 clearly illustrates a mechanical advantage obtained by locating the contact area between valve actuating element 22 and surface 58 of nozzle 24 closer to the axis of rotation 55 than the driving contact between pinion 52 and gear 54.
  • the DC motor 32 is thus positively coupled to the valve 20.
  • Unijunction timer network 78 includes a programmable unijunction 86 whose triggering level is a function of the bias potential developed on its gate 88 by the voltage on ajunction 90 formed by series coupled resistors 92 and 94.
  • a charging network formed by series coupled resistors 96, 98 and capacitor 100 provide the desired timing function.
  • a current limiting low value resistor 102 couples capacitor 100 to anode 104 of unijunction transistor 86.
  • the values of resistors 92, 94, 96 and 98 and the capacitance of capacitor 100 are chosen to develop the desired periodic triggering of unijunction 86, say once every twelve to fifteen minutes.
  • the bias voltage normally developed at junction 90 is insufficient to overcome the base to emitter voltage of output transistor switch 76 plus the forward voltage of diode 82. Hence, output transistor switch 76 is normally non conducting and DC motor 32 remains de-energized.
  • capacitor 100 is charged through resistors 96 and 98, the voltage of anode 104 reaches the triggering level for unijunction 86.
  • the impedance between anode 104 and cathode I06 drops to a low value and capacitor 100 is discharged through resistor 102.
  • the impedance between gate 88 and cathode 106 also drops so that the voltage at junction 90 is pulled to a level which is sufficiently.
  • transistor 76 As soon as transistor 76 conducts and current flows through motor 32, the latter starts to turn in the direction of arrow 108 (see FIG. 1) to drive the valve contacting element 22 against nozzle 24 and actuate metered valve 20 as shown in FIG. 3.
  • the conduction of output transistor 76 continues for the time needed to discharge capacitor 100. This time period (generally about half a second) is selected commensurate with the inertia of the mechanic components and the time needed to obtain a burst of spray from the metered valve 20.
  • capacitor 100 When capacitor 100 has discharged to a minimum voltage, which is a function of the characteristics of unijunction transistor 86, the latters anode to cathode and gate to cathode junctions will again become high impedances. The bias voltage of junction 90 is thenreestablished, to again bias the base to emitter voltage of output transistor 76 below cut-off and de-energize DC motor 32.
  • the power demanded of batteries 38 is a function of the force needed to depress valve 20, the length of stroke to dispense the efficiency of the torque conversion, the standby power consumption (primarily small current drain by resistors 92 and 94), and the frequency of operation.
  • a low pressure metering valve such as one which requires a downward pressure of the order of only several pounds, a pair of D size batteries will be sufficient to operate the spray dispenser for an entire year with timing intervals of the order of minutes.
  • the quantity of spray emitted may be increased by increasing the frequency of valve actuations.
  • the quantity of spray emitted with each actuation may be varied with the substitution of a different valve. If then, in addition, an average discharge over extended time periods must be maintained, the timing intervals produced by the timing circuit may be varied to accomplish this.
  • the pulsed operation of DC motor 32 with its direct positive coupling with valve advantageously disan eighth of an inch.
  • the second lobe 116 is provided at the end of extension 110 for connection to a lever (not shown) extending transversely out of the plane of the drawing and by which one may manually actuate valve 20.
  • a normally open .push button switch 118 is further provided for connection between junction 90 and return lead 72'.
  • junction 90 is pulled down in voltage to energize motor 32 as if unijunction 86 had been fired. In this manner, a convenient testing of the spray dispenser may be obtained.
  • a valve actuating element is shown in the form of a multilobed extension 110 which forms an integral part with a gear segment 112 driven by pinion 52'.
  • the inner lobe 114 of extension 110 is disposed in contact with nozzle 24 similar to surface 56 of the valve engaging element 22 in FIG. 2.
  • a gear segment 112 is employed since this will provide sufficient rotational drive to depress the valve 20 through its range of about so] container having an outwardly biased valve which emits the metered quantity of spray when inwardly depressed comprising a DC motor and a valve contacting element disposed to depress the output valve of the aerosol container,
  • Atiming circuit coupling the DC power supply to the DC motor, said timing circuit producing output power pulses to periodically energize the DC motor for sufficient duration to drive the valve contacting element in a first direction and depress the output valve for a discharge of a metered quantity of spray, the power pulses from said timing circuit being of sufficient duration to seat the output valve and stall the DC motor, said valve contacting element being moved in a reverse direction to its normal position at the end of each power pulse to prepare for a succeeding power pulse from the timing circuit.
  • valve contacting element is provided with an integrally connected gear in meshing relationship with the reduction gear train for positive coupling with the DC motor.
  • valve contacting element is in the form of an extension with a lobe oriented to contact the output valve.
  • An apparatus for automatically and periodically discharging a metered quantity of spray from an aerosol container having an outwardly spring biased valve which emits the metered quantity of spray when inwardly depressed comprising a DC motor and a rotatably mounted valve contacting element disposed to depress the output valve of the aerosol container,
  • a reduction gear train positively connecting the DC motor to the valve contacting element to deliver sufficient torque to rotate the valve contacting element and depress the output valve upon DC motor energization, said reduction gear train furtherenabling the spring bias of the output valve to return the valve contacting element to its normally disposed position with a reversal of rotation of the positively connected DC motor when the latter is de-energized
  • timing circuit coupling the DC power supply to the DC motor, said timing circuit producing output power pulses to periodically energize the DC motor for sufficient duration to rotate the valve contacting element in a first direction and depress the output valve for a discharge of a metered quantity of spray followed with a reverse rotation of the valve contacting element and the DC motor at the end of each power pulse to prepare for a succeeding power pulse from the timing circuit.
  • valve contacting element is provided with a gear operatively engaged by the gear train to drive the valve contacting element into rotation and permit the output valve to cause said reverse rotation of the valve contacting element and the DC motor.
  • valve contacting element engages the output valve at a location which is radially inwardly relative to the driving point between the gear train and the gear on the valve contacting element for an enhanced mechanical advantage during output valve actuation.

Abstract

An apparatus for automatically and periodically discharging a metered quantity of spray from an aerosol container is described. A DC motor is directly coupled in positive relationship through a reduction gear train and a valve contacting element with a metering valve of an aerosol container. A timing circuit which couples a battery power source to the DC motor delivers periodic power pulses to energize the motor and actuate the container valve. The spring return force in the valve returns the valve contacting element to its normal position at the end of each power pulse without requiring a disconnection of the positively coupled DC motor.

Description

United States Patent 0 1 [56] References Cited UNITED STATES PATENTS 2,928,573 3/1960 Edelstein 222/70 Rogerson June 19, 1973 AUTOMATIC PERIODICALLY ACTUATED Primary Examiner-Robert B. Reeves SPRAY DISPENSER Assistant ExaminerLarry Martin [75] Inventor: Thomas Rogerson, Old Lyme, Conn. Att0meiy F' Henson and Arenz [73] Assignee: Westinghouse Electric Corporation Pittsburgh, Pa. [57] ABSTRACT 22] Filed; May 25 1972 An apparatus for automatically and periodically dis charging a metered quantity of spray from an aerosol l PP 256,733 container is described. A DC motor is directly coupled in positive relationship through a reduction gear train 52 us. c1. 222/70, 239/70 and a valve contacting elemem with a metering valve 51 1 Int. Cl B67d 5/08 Of an aerosol comaiher- A timihg circuit which Couples 53 Field of Search 222/70 76 504- a battery P mum to the DC motor delivers t odic power pulses to energize the motor and actuate the container valve. The spring return force in the valve returns the valve contacting element to its normal position at the end of each power pulse without requiring a disconnection of the positively coupled DC motor.
7 Claims, 5 Drawing Figures AUTOMATIC PERIODICALLY ACTUATED SPRAY DISPENSER BACKGROUND OF THE INVENTION This invention relates to an apparatus for automatically and periodically discharging a metered quantity of spray from an aerosol container. More specifically, this invention relates to an automatic spray dispenser which is capable of operating off commonly available batteries for extremely long time periods.
Pressurized aerosol containers have achieved wide usage in dispensing materials such as deodorizers, insecticides, germicides and the like. Such containers are commonly provided with an upwardly projecting valve having a spray nozzle. The valve may beopened with downward pressure, or in some cases, by tilting the valve to one side. There are two basic types of valves: in one type, a spray is continuously dispensed as long as the valve is depressed, and in the other (usually referred to as the metering valve), the depression of the valve discharges a single measured burst of spray.
There are numerous applications in which it is advantageous to automatically and periodically actuate the valve of the aerosol container to dispense a predetermined quantity of spray at periodic timed intervals. There are also numerous automatic dispensers presently on the market. Devices of this kind are commonly provided with an electric motor with means for periodically actuating the valve. Other devices of this kind operate with motors which are energized by high voltage alternating current at the usual line potential. Consequently, it is necessary to provide a line cord for connecting such device to the alternating current source. When it is desired to place the device in a location where there is either no nearby outlet or whereby the provision of a line cord would be objectionable, battery electrical power sources are to be employed.
The present automatic aerosol dispenser is designed to operate from flashlight batteries or such other similar inexpensive electric storage units with a minimum of energy drainage being demanded from the battery during the brief time periods when the valve is actuated. In 'a typical application of an aerosol container in accordance with the invention, the valve is actuated once every minutes for a very brief time in the order of a half a second. Devices for driving a DC motorfrom batteries to accomplish a periodic actuation from an aerosol container are well known. See for example the U. S. Pat. to Klebanoff et al. No. 3,543,122. In this patent an automatic aerosol dispenser is disclosed wherein a DC motor drives a gear which, in turn, is coupled by means of an eccentric drive to a valve actuator in the form of a ring. The eccentric drive includes a ball which is driven between the ring and a drum to drive the ring against the valve to emit a burst of spray. The ring is spring loaded so that upon reversal of the DC motor, as controlled by a separate reversing element, valve actuation is terminated.
Another DC motor driven automatic aerosol dispensing device is disclosed in the U. S. Pat. to Goldsholl et al. No. 3,289,886. In this patent a DC motor is shown connectedthrough reduction gearing to a cam. The cam, in turn, is engaged by a cam follower which is coupled to a spring loaded valve-engaging element. The valve-engaging element is urged downwardly against the valve. When an undulation on the cam is rotated to .an appropriate position by the DC motor, the valveengaging element is released to depress the valve and a burst of spray is emitted. In addition, the output of the reduction gear train rotates a mechanical delay-switch which periodically energizes the motor for short time periods to rotate the cam for a valve actuation.
The automatic aerosol dispensing devices shown in Klebanoff et a1. and Goldsholl et al. include mechanical elements which increase the complexity of the device. For example, the mechanical delays employed in both of these devices require, additional structural features which are rotated by the motor. Additional mechanical elements such as the cam in Goldsholl et al. or the eccentric ball mount in Klebanoff et al. are necessary to actuate the output valve of an aerosol container. A spring loading feature employed in the Goldsholl et al. dispenser presents an additional undesired force which must be overcome during rotation of the motor and thus, demands additional energy from the power supply.
In another type of periodically operated aerosol container, a motor may be employed which is continuously rotated on AC power. See for example, the automatic spray dispensers in Montgomery U.S. Pat. No. 3,018,056, Edelstein U.S. Pat. No. 2,928,573 and Kraus U.S. Pat. No. 2,613,108.
In Edelstein, a valve is depressed by a flat metal plate connected to the output shaft of a reduction gear train driven by a synchronous AC motor. The motor is continuously operated, but when the metal plate contacts and depresses the metering valve, an automatic motor reversal occurs. As the flat metal plate is then rotated away from the valve, contact is made with a stop where another motor reversal arises to again advance the flat metal plate to the valve for its actuation. The automatic spray dispenser described in Montgomery utilizes a continuously driven cam to pivot a pair of valveengaging links in sequence for a metered burst of spray.
Periodically operated solenoids are employed in automatic aerosol dispensers as described in the U. S. patents to Gray No. 3,351,240 and Mangel No. 3,187,949.
In Gray, an electronic timing circuit generates an output pulse which turns an electronic transistor switch on for a time period sufficient to energize a solenoid whose armature is moved to permit the emission of a burst of spray. Both in Mangel and. Gray, the armatures of the solenoids form an integral part of a modified valve. Such construction is complex and tends to demand excessive electrical power from limited power sources such as batteries.
SUMMARY OF THE INVENTION In an automatic spray dispenser in accordance with the invention, a DC motor is positively coupled by a reduction gear train and a valve contacting element to the output valve of an aerosol container. The valve contacting element which normally rests upon the output valve, depresses it upon motor actuation. A timing circuit delivers pulses of electrical power from a battery power source to the motor. As the DC motor is rotated during a power pulse, the valve contacting element depresses the output valve which emits a measured burst of spray.
Motor rotation persists until the valve seats at the end of its stroke. In effect, therefore, the DC motor is stalled towards the end of the power pulse. When power to the DC motor is terminated at the end of a power pulse, the spring loaded valve is allowed to return the valve contacting element to its normal position. During this return, the DC motor, though being positively connected to the valve contacting element, need not be disconnected, but may be reversely rotated. After a predetermined delay, the timing circuit generates another power pulse to again actuate the aerosol container for another burst of spray.
With an automatic, self-powered spray dispensing device in accordance with the invention, a battery lifetime of the order of one year is obtained. This is obtained with a silent drive structure which presents a very low current drain each time the DC motor is actuated.
With a spray dispenser in accordance with the invention, structural elements such as the spring and cam in Goldsholl et al., or the eccentric drive of Klebanoff et al., have been conveniently deleted. Furthermore, the complex solenoid structures such as used in Mangel and Gray have been bypassed with a spray dispenser of this invention which utilizes commonly available aerosol dispensers without structural modification.
It is, therefore, an object of the invention to provide a quiet, self-powered, automatic spray dispenser which may be operated from batteries for very long time periods with a practical economic valve actuating structure.
BRIEF DESCRIPTION OF DRAWINGS These and other objects and advantages of an automatic spray dispenser in accordance with the invention may be understood from the following description of an embodiment described in conjunction with the drawings wherein FIG. 1 is a perspective partial view of an automatic spray dispenser in accordance with the invention;
FIGS. 2 and 3 are each an enlarged frontal view of a valve-contacting element employed on an automatic spray dispenser shown in FIG. 1 and respectively show a normal and actuated position of the valve contacting element;
FIG. 4 is a schematic of a timing circuit employed with the automatic spray dispenser shown in FIG. 1; and
FIG. 5 is a frontal view of an alternate valve driving structure employed in an automatic spray dispenser in accordance with the invention.
DETAILED DESCRIPTION OF EMBODIMENT With reference to FIGS. 1, 2 and 3, an automatic spray dispenser in accordance with the invention is shown mounted on a back door 12 ofa cabinet 14. The cabinet 14 has an opening 16 through which a burst of spray from an aerosol container 18 can be discharged into a room. The aerosol container 18 is supported on a ledge (not shown) to place its valve 20 beneath a retainer bracket 21 and a valve engaging element 22. Valve 20 is of the metered type which, upon a downward movement of nozzle 24, emits a measured amount of spray through stem 25 and opening 27. The amount of spray usually is of the order of 100 milligrams. The valve nozzle 24 is spring loaded upwards so that a downward or inward force is needed to actuate the valve. The valve motion needed to obtain a burst of spray is small and downward movement of the valve nozzle 24 is limited when its lower surface 26 contacts seat 28.
A self-powered automatic actuator 30.is used to depress valve 20 and includes a DC motor 32, a reduction gear train 34, an electric timing circuit 36 and a supply 38 of DC power in the form of a pair of series connected flashlight batteries. The DC motor 32 and gear train 34 are mounted on a bracket 40, which is spaced from back door 12 by spacers 42, to locate the valve actuator 22 directly over nozzle 24, as shown.
DC motor 32 has an output shaft 44 provided with a pinion 46 which engages a first cluster gear 48 in the reduction gear train 34. The gear train 34 is shown formed of a number of reductions with first and second cluster gears 48 and 50, each of which is further provided with pinions 52-52 respectively to provide the desired torque conversion in a well-known manner.
The output pinion 52 engages a gear 54 rotatable about axis 55 and which gear is firmly affixed to the valve engaging element 22 or may form an integral part therewith. The valve engaging element 22 has a contact edge 56 which is disposed to engage the top 58 of nozzle 24 when rotated counter-clockwise in the direction of arrow 60. FIG. 2 clearly illustrates a mechanical advantage obtained by locating the contact area between valve actuating element 22 and surface 58 of nozzle 24 closer to the axis of rotation 55 than the driving contact between pinion 52 and gear 54. The DC motor 32, is thus positively coupled to the valve 20.
FIG. 4 illustrates electrical details of timing circuit 36 which produces a power pulse on line to drive DC motor 32. A pair of series connected D sized flashlight batteries (smaller sizes may be employed) deliver a three volt source across a pair of power leads 72-72. Lead 72' is coupled through an on-off switch 74 to the negative input side of motor 32 and lead 72 is connected through an output transistor switch 76 to the positive side of motor 32. The transistor output switch 76 is controlled by a unijunction timer network 78 which is connected through a current limiting resistor 80 and diode 82 to the base 84 of output transistor 76.
Unijunction timer network 78 includes a programmable unijunction 86 whose triggering level is a function of the bias potential developed on its gate 88 by the voltage on ajunction 90 formed by series coupled resistors 92 and 94. A charging network formed by series coupled resistors 96, 98 and capacitor 100 provide the desired timing function. A current limiting low value resistor 102 couples capacitor 100 to anode 104 of unijunction transistor 86. The values of resistors 92, 94, 96 and 98 and the capacitance of capacitor 100 are chosen to develop the desired periodic triggering of unijunction 86, say once every twelve to fifteen minutes.
During operation of timing network 78, the bias voltage normally developed at junction 90 is insufficient to overcome the base to emitter voltage of output transistor switch 76 plus the forward voltage of diode 82. Hence, output transistor switch 76 is normally non conducting and DC motor 32 remains de-energized. As capacitor 100 is charged through resistors 96 and 98, the voltage of anode 104 reaches the triggering level for unijunction 86. At the triggering level the impedance between anode 104 and cathode I06 drops to a low value and capacitor 100 is discharged through resistor 102. At the same time, the impedance between gate 88 and cathode 106 also drops so that the voltage at junction 90 is pulled to a level which is sufficiently.
low to establish a forward bias on the base to emitter junction of output transistor 76 and cause the latter to conduct.
As soon as transistor 76 conducts and current flows through motor 32, the latter starts to turn in the direction of arrow 108 (see FIG. 1) to drive the valve contacting element 22 against nozzle 24 and actuate metered valve 20 as shown in FIG. 3. The conduction of output transistor 76 continues for the time needed to discharge capacitor 100. This time period (generally about half a second) is selected commensurate with the inertia of the mechanic components and the time needed to obtain a burst of spray from the metered valve 20.
When capacitor 100 has discharged to a minimum voltage, which is a function of the characteristics of unijunction transistor 86, the latters anode to cathode and gate to cathode junctions will again become high impedances. The bias voltage of junction 90 is thenreestablished, to again bias the base to emitter voltage of output transistor 76 below cut-off and de-energize DC motor 32.
The power pulse from transistor 76 provides sufficient power to drive the nozzle 24 to its seated position, as shown in FIG. 3. In this position, drive motor 32 is stalled and remains that way until the end of the power pulse. When power is no longer applied, the spring action from valve 20 pushes nozzle 24 upwardly and is sufficient to return valve contacting element 22 to its normal position as shown in FIGS. 1 and 2. This return movement effectively reverses the rotational output shaft 44 of DC motor 32, which, in view of the removal of electrical power, is freely permitted.
The power demanded of batteries 38 is a function of the force needed to depress valve 20, the length of stroke to dispense the efficiency of the torque conversion, the standby power consumption (primarily small current drain by resistors 92 and 94), and the frequency of operation. When a low pressure metering valve is employed, such as one which requires a downward pressure of the order of only several pounds, a pair of D size batteries will be sufficient to operate the spray dispenser for an entire year with timing intervals of the order of minutes. The quantity of spray emitted may be increased by increasing the frequency of valve actuations. When the type of spary or the room into which it is discharged so dictate, the quantity of spray emitted with each actuation may be varied with the substitution of a different valve. If then, in addition, an average discharge over extended time periods must be maintained, the timing intervals produced by the timing circuit may be varied to accomplish this.
The pulsed operation of DC motor 32 with its direct positive coupling with valve advantageously disan eighth of an inch. The second lobe 116 is provided at the end of extension 110 for connection to a lever (not shown) extending transversely out of the plane of the drawing and by which one may manually actuate valve 20. I
As shown in FIG. 4, a normally open .push button switch 118 is further provided for connection between junction 90 and return lead 72'. When this push button 118 is actuated, junction 90 is pulled down in voltage to energize motor 32 as if unijunction 86 had been fired. In this manner, a convenient testing of the spray dispenser may be obtained.
Having thus described an automatic spray dispenser in accordance with the invention,its advantages may be appreciated. The pulsed operation and direct positive coupling between the DC motor andthe aerosol container valve providesa highly efficient use of available battery power. The direct gear drive without extraneous spring devices provides a low noise operation with reliable performance over extended time periods.
What is claimed is 1. An apparatus for automatically and periodically discharging a metered quantity of spray from an aeropenses with components such as return springs, motor reversing elements, cams and the like as employed in prior art automatic spray dispensers. The simplicity of an automatic spray dispenser of this invention may further be appreciated with reference to the modification shown in FIG. 5.
In FIG. 5 a valve actuating element is shown in the form of a multilobed extension 110 which forms an integral part with a gear segment 112 driven by pinion 52'. The inner lobe 114 of extension 110 is disposed in contact with nozzle 24 similar to surface 56 of the valve engaging element 22 in FIG. 2. A gear segment 112 is employed since this will provide sufficient rotational drive to depress the valve 20 through its range of about so] container having an outwardly biased valve which emits the metered quantity of spray when inwardly depressed comprising a DC motor and a valve contacting element disposed to depress the output valve of the aerosol container,
a reduction gear train positively connecting the DC motor to the valve contacting element to deliver sufficient torque to drive the valve contacting element against the output valve and depress the latter upon DC motor energization, said reduction gear train and positively connected DC motor further enabling the bias of the output valve to return the valve contacting element to its normally disposed position when the DC motor is de-energized,
a supply of DC power, and
atiming circuit coupling the DC power supply to the DC motor, said timing circuit producing output power pulses to periodically energize the DC motor for sufficient duration to drive the valve contacting element in a first direction and depress the output valve for a discharge of a metered quantity of spray, the power pulses from said timing circuit being of sufficient duration to seat the output valve and stall the DC motor, said valve contacting element being moved in a reverse direction to its normal position at the end of each power pulse to prepare for a succeeding power pulse from the timing circuit.
2. The apparatus for automatically emitting bursts of spray from an aerosol container as claimed in claim 1 wherein said valve contacting element is provided with an integrally connected gear in meshing relationship with the reduction gear train for positive coupling with the DC motor.
3. The apparatus for automatically emitting bursts of spray from an aerosol container as claimed in claim 2 wherein said valve contacting element is in the form of an extension with a lobe oriented to contact the output valve.
4. An apparatus for automatically and periodically discharging a metered quantity of spray from an aerosol container having an outwardly spring biased valve which emits the metered quantity of spray when inwardly depressed comprising a DC motor and a rotatably mounted valve contacting element disposed to depress the output valve of the aerosol container,
a reduction gear train positively connecting the DC motor to the valve contacting element to deliver sufficient torque to rotate the valve contacting element and depress the output valve upon DC motor energization, said reduction gear train furtherenabling the spring bias of the output valve to return the valve contacting element to its normally disposed position with a reversal of rotation of the positively connected DC motor when the latter is de-energized,
a supply of DC power, and
a timing circuit coupling the DC power supply to the DC motor, said timing circuit producing output power pulses to periodically energize the DC motor for sufficient duration to rotate the valve contacting element in a first direction and depress the output valve for a discharge of a metered quantity of spray followed with a reverse rotation of the valve contacting element and the DC motor at the end of each power pulse to prepare for a succeeding power pulse from the timing circuit.
5. The apparatus for automatically and periodically dispensing a burst of spray as claimed in claim 4 wherein said valve contacting element is provided with a gear operatively engaged by the gear train to drive the valve contacting element into rotation and permit the output valve to cause said reverse rotation of the valve contacting element and the DC motor.
6. The apparatus for automatically and periodically dispensing a burst of spray as claimed in claim 5 wherein said valve contacting element engages the output valve at a location which is radially inwardly relative to the driving point between the gear train and the gear on the valve contacting element for an enhanced mechanical advantage during output valve actuation.
7. The apparatus for automatically and periodically dispensing a burst of spray as claimed in claim 6 wherein said gear on the valve contacting element is in the form of a segment of a gear and is an integral part of the valve contacting element.

Claims (7)

1. An apparatus for automatically and periodically discharging a metered quantity of spray from an aerosol container having an outwardly biased valve which emits the metered quantity of spray when inwardly depressed comprising a DC motor and a valve contacting element disposed to depress the output valve of the aerosol container, a reduction gear train positively connecting the DC motor to the valve contacting element to deliver sufficient torque to drive the valve contacting element against the output valve and depress the latter upon DC motor energization, said reduction gear train and positively connected DC motor further enabling the bias of the output valve to return the valve contacting element to its normally disposed position when the DC moTor is de-energized, a supply of DC power, and a timing circuit coupling the DC power supply to the DC motor, said timing circuit producing output power pulses to periodically energize the DC motor for sufficient duration to drive the valve contacting element in a first direction and depress the output valve for a discharge of a metered quantity of spray, the power pulses from said timing circuit being of sufficient duration to seat the output valve and stall the DC motor, said valve contacting element being moved in a reverse direction to its normal position at the end of each power pulse to prepare for a succeeding power pulse from the timing circuit.
2. The apparatus for automatically emitting bursts of spray from an aerosol container as claimed in claim 1 wherein said valve contacting element is provided with an integrally connected gear in meshing relationship with the reduction gear train for positive coupling with the DC motor.
3. The apparatus for automatically emitting bursts of spray from an aerosol container as claimed in claim 2 wherein said valve contacting element is in the form of an extension with a lobe oriented to contact the output valve.
4. An apparatus for automatically and periodically discharging a metered quantity of spray from an aerosol container having an outwardly spring biased valve which emits the metered quantity of spray when inwardly depressed comprising a DC motor and a rotatably mounted valve contacting element disposed to depress the output valve of the aerosol container, a reduction gear train positively connecting the DC motor to the valve contacting element to deliver sufficient torque to rotate the valve contacting element and depress the output valve upon DC motor energization, said reduction gear train further enabling the spring bias of the output valve to return the valve contacting element to its normally disposed position with a reversal of rotation of the positively connected DC motor when the latter is de-energized, a supply of DC power, and a timing circuit coupling the DC power supply to the DC motor, said timing circuit producing output power pulses to periodically energize the DC motor for sufficient duration to rotate the valve contacting element in a first direction and depress the output valve for a discharge of a metered quantity of spray followed with a reverse rotation of the valve contacting element and the DC motor at the end of each power pulse to prepare for a succeeding power pulse from the timing circuit.
5. The apparatus for automatically and periodically dispensing a burst of spray as claimed in claim 4 wherein said valve contacting element is provided with a gear operatively engaged by the gear train to drive the valve contacting element into rotation and permit the output valve to cause said reverse rotation of the valve contacting element and the DC motor.
6. The apparatus for automatically and periodically dispensing a burst of spray as claimed in claim 5 wherein said valve contacting element engages the output valve at a location which is radially inwardly relative to the driving point between the gear train and the gear on the valve contacting element for an enhanced mechanical advantage during output valve actuation.
7. The apparatus for automatically and periodically dispensing a burst of spray as claimed in claim 6 wherein said gear on the valve contacting element is in the form of a segment of a gear and is an integral part of the valve contacting element.
US00256733A 1972-05-25 1972-05-25 Automatic periodically actuated spray dispenser Expired - Lifetime US3739944A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US25673372A 1972-05-25 1972-05-25

Publications (1)

Publication Number Publication Date
US3739944A true US3739944A (en) 1973-06-19

Family

ID=22973377

Family Applications (1)

Application Number Title Priority Date Filing Date
US00256733A Expired - Lifetime US3739944A (en) 1972-05-25 1972-05-25 Automatic periodically actuated spray dispenser

Country Status (12)

Country Link
US (1) US3739944A (en)
JP (1) JPS5333766B2 (en)
AR (1) AR199297A1 (en)
AU (1) AU468117B2 (en)
BE (1) BE800012A (en)
CA (1) CA984349A (en)
CH (1) CH572356A5 (en)
DE (1) DE2326293A1 (en)
FR (1) FR2185939A5 (en)
GB (1) GB1426583A (en)
HK (1) HK72476A (en)
IT (1) IT987886B (en)

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3990848A (en) * 1975-04-10 1976-11-09 The Risdon Manufacturing Company System for inducing air flow past a gel type product
US3993444A (en) * 1973-10-17 1976-11-23 Edward Leslie Brown Intermittent time controlled vapor dispensing device
US4011927A (en) * 1975-03-07 1977-03-15 Auto Research Corporation Long time period astable multivibrator circuit with independently adjustable time constants
DE2733253A1 (en) * 1976-07-23 1978-01-26 Risdon Mfg Co CAPSULE OR CARTRIDGE FOR USE IN A DEVICE FOR GENERATING A FLOW OF AIR OVER A VAPORABLE PRODUCT
US4235373A (en) * 1976-10-12 1980-11-25 Strattwell Developments Limited Fluid dispenser
WO1985004851A1 (en) * 1984-04-26 1985-11-07 Fact-Anal Scp Deodorant dispenser device for lavatories
US4989755A (en) * 1988-12-20 1991-02-05 Shiau Guey Chuan Automatic cleaning-liquid dispensing device
US5249718A (en) * 1992-03-16 1993-10-05 Technical Concepts Automatic pump-type spray dispenser
USRE34847E (en) * 1989-09-26 1995-02-07 Technical Concepts, Inc. Metered aerosol fragrance dispensing mechanism
USD361375S (en) 1994-08-17 1995-08-15 Amrep, Inc. Aerosol dispensing cabinet
US5487502A (en) * 1994-07-25 1996-01-30 Liao; Ming-Kang Decorative means for emitting odor and generating sound
US5676283A (en) * 1996-07-04 1997-10-14 Kae Chuang International Co., Ltd. Power device for a perfume sprayer
US5675845A (en) * 1995-06-02 1997-10-14 Robert F. Martin Spray dispenser actuated by toilet flushing function
US5895318A (en) * 1996-09-10 1999-04-20 Smrt; Thomas J. Apparatus and method for selectively dispensing oxygen from an aerosol container
WO1999034266A1 (en) 1997-12-25 1999-07-08 Gotit Ltd. Automatic spray dispenser
US6003727A (en) * 1998-09-23 1999-12-21 Marshall; Bonnie R. Coin operated fragrance dispensing device
WO2001055009A1 (en) 2000-01-25 2001-08-02 Gotit Ltd. Spray dispenser
US6293442B1 (en) * 2000-05-16 2001-09-25 Girard D. Mollayan Timed aerosol spray dispenser
US20030183728A1 (en) * 2002-03-29 2003-10-02 The Boeing Company Aircraft control surface controller and associated method
US6785911B1 (en) * 2003-11-13 2004-09-07 Marvin J. Percher Automatic actuator for aerosol containers
US20050127204A1 (en) * 2001-04-13 2005-06-16 Linstedt Brian K. Automated cleansing sprayer
US20050145712A1 (en) * 2004-01-06 2005-07-07 Bagnall Gary W. Spraying/misting for plants and animals
US20050247735A1 (en) * 2004-05-10 2005-11-10 Muderlak Kenneth J Apparatus and method for dispensing post-foaming gel soap
US20060086824A1 (en) * 2004-10-21 2006-04-27 Nhc Corporation Automatic light-activated portable mist sprayer device
US20070199952A1 (en) * 2004-10-12 2007-08-30 Carpenter M S Compact spray device
US20080023497A1 (en) * 2005-01-10 2008-01-31 Hyso Technology Llc Elongated nozzle configured for use with automated dispensers such as door handle sprayers and the like
US20080142555A1 (en) * 2005-04-28 2008-06-19 Persee Medica Device for Applying a Fluid to an Area to be Treated, Comprising a Timing System
US20080184614A1 (en) * 2006-10-02 2008-08-07 Higbee Bradley Apparatus and systems for using semiochemical compositions for insect pest control
US20080210772A1 (en) * 2004-10-21 2008-09-04 Robert Clarence Pearce Light-Activated Portable Aerosol Mist Sprayer Device
WO2009062553A1 (en) 2007-11-15 2009-05-22 Zobele Holding S.P.A. Automatic dual-spray dispenser device
US20100038452A1 (en) * 2008-08-15 2010-02-18 Po-Hui Lin Automatic air freshener spraying device
US7837065B2 (en) 2004-10-12 2010-11-23 S.C. Johnson & Son, Inc. Compact spray device
US7878371B2 (en) 2008-09-04 2011-02-01 Hyso Technology Llc Controllable door handle sanitizer
US20110095044A1 (en) * 2009-10-26 2011-04-28 Gene Sipinski Dispensers and Functional Operation and Timing Control Improvements for Dispensers
CN102616479A (en) * 2011-01-30 2012-08-01 上海携福电器有限公司 Electricity-saving fluid product diffuser
US8381951B2 (en) 2007-08-16 2013-02-26 S.C. Johnson & Son, Inc. Overcap for a spray device
US8387827B2 (en) 2008-03-24 2013-03-05 S.C. Johnson & Son, Inc. Volatile material dispenser
USD679793S1 (en) 2012-01-25 2013-04-09 S. C. Johnson & Son, Inc. Dispenser shroud
US8469244B2 (en) 2007-08-16 2013-06-25 S.C. Johnson & Son, Inc. Overcap and system for spraying a fluid
US8556122B2 (en) 2007-08-16 2013-10-15 S.C. Johnson & Son, Inc. Apparatus for control of a volatile material dispenser
US8590743B2 (en) 2007-05-10 2013-11-26 S.C. Johnson & Son, Inc. Actuator cap for a spray device
US9108782B2 (en) 2012-10-15 2015-08-18 S.C. Johnson & Son, Inc. Dispensing systems with improved sensing capabilities
US20150335004A1 (en) * 2014-05-21 2015-11-26 Derrick Gale Flying Insect Spray Apparatus
WO2018038638A1 (en) * 2016-08-22 2018-03-01 Общество С Ограниченной Ответственностью "Парфюм Вендинг" Device for dispensing liquid product
US10183308B2 (en) 2014-10-14 2019-01-22 Conopco, Inc. Spraying device
US10385560B2 (en) 2014-10-14 2019-08-20 Conopco, Inc. Device for spraying an enclosure triggered by inclination of a rotatable lid
US11117734B2 (en) * 2019-04-03 2021-09-14 Suterra, Llc Puffer device
GB2594996A (en) * 2020-05-15 2021-11-17 Paul William Cain Jamie An insect control device

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2132280A (en) * 1982-11-19 1984-07-04 Laserpark Ltd A valve actuator
JPS58155435U (en) * 1982-04-13 1983-10-17 株式会社椿本チエイン Electromagnetic clutch/brake gap adjustment device
JPS60121327A (en) * 1983-12-01 1985-06-28 Shinko Electric Co Ltd Device for adjusting gap of electromagnetic clutch brake
US4967935A (en) * 1989-05-15 1990-11-06 Celest Salvatore A Electronically controlled fluid dispenser
JPH0357527U (en) * 1989-10-11 1991-06-03
US5055822A (en) * 1990-07-06 1991-10-08 Gordon Campbell Scent alarm device
US5392768A (en) * 1991-03-05 1995-02-28 Aradigm Method and apparatus for releasing a controlled amount of aerosol medication over a selectable time interval
US5394866A (en) * 1991-03-05 1995-03-07 Aradigm Corporation Automatic aerosol medication delivery system and methods
DE69430303T2 (en) * 1991-03-05 2002-11-28 Aradigm Corp METHOD AND DEVICE FOR CORRECTING A ZERO SIGNAL OF A PRESSURE SENSOR FOR A FLOW METER
US5450336A (en) 1991-03-05 1995-09-12 Aradigm Corporation Method for correcting the drift offset of a transducer
US5404871A (en) * 1991-03-05 1995-04-11 Aradigm Delivery of aerosol medications for inspiration
CN103492287B (en) 2011-03-01 2015-10-07 约翰逊父子公司 Driver module assembly, distribution system and assemble method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2928573A (en) * 1958-02-25 1960-03-15 Syncro Mist Controls Inc Valve actuating assembly for metered spray atomizing devices

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4322760Y1 (en) * 1964-07-21 1968-09-25

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2928573A (en) * 1958-02-25 1960-03-15 Syncro Mist Controls Inc Valve actuating assembly for metered spray atomizing devices

Cited By (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3993444A (en) * 1973-10-17 1976-11-23 Edward Leslie Brown Intermittent time controlled vapor dispensing device
US4011927A (en) * 1975-03-07 1977-03-15 Auto Research Corporation Long time period astable multivibrator circuit with independently adjustable time constants
US3990848A (en) * 1975-04-10 1976-11-09 The Risdon Manufacturing Company System for inducing air flow past a gel type product
DE2733253A1 (en) * 1976-07-23 1978-01-26 Risdon Mfg Co CAPSULE OR CARTRIDGE FOR USE IN A DEVICE FOR GENERATING A FLOW OF AIR OVER A VAPORABLE PRODUCT
US4235373A (en) * 1976-10-12 1980-11-25 Strattwell Developments Limited Fluid dispenser
WO1985004851A1 (en) * 1984-04-26 1985-11-07 Fact-Anal Scp Deodorant dispenser device for lavatories
US4989755A (en) * 1988-12-20 1991-02-05 Shiau Guey Chuan Automatic cleaning-liquid dispensing device
USRE34847E (en) * 1989-09-26 1995-02-07 Technical Concepts, Inc. Metered aerosol fragrance dispensing mechanism
US5249718A (en) * 1992-03-16 1993-10-05 Technical Concepts Automatic pump-type spray dispenser
US5487502A (en) * 1994-07-25 1996-01-30 Liao; Ming-Kang Decorative means for emitting odor and generating sound
USD361375S (en) 1994-08-17 1995-08-15 Amrep, Inc. Aerosol dispensing cabinet
US5675845A (en) * 1995-06-02 1997-10-14 Robert F. Martin Spray dispenser actuated by toilet flushing function
US5676283A (en) * 1996-07-04 1997-10-14 Kae Chuang International Co., Ltd. Power device for a perfume sprayer
US5895318A (en) * 1996-09-10 1999-04-20 Smrt; Thomas J. Apparatus and method for selectively dispensing oxygen from an aerosol container
US6517009B2 (en) 1997-12-25 2003-02-11 Gotit Ltd. Automatic spray dispenser
WO1999034266A1 (en) 1997-12-25 1999-07-08 Gotit Ltd. Automatic spray dispenser
US6540155B1 (en) * 1997-12-25 2003-04-01 Gotit Ltd. Automatic spray dispenser
US6003727A (en) * 1998-09-23 1999-12-21 Marshall; Bonnie R. Coin operated fragrance dispensing device
WO2001055009A1 (en) 2000-01-25 2001-08-02 Gotit Ltd. Spray dispenser
US6293442B1 (en) * 2000-05-16 2001-09-25 Girard D. Mollayan Timed aerosol spray dispenser
US20050127204A1 (en) * 2001-04-13 2005-06-16 Linstedt Brian K. Automated cleansing sprayer
US7775458B2 (en) * 2001-04-13 2010-08-17 S.C. Johnson & Son, Inc. Automated cleansing sprayer
US20030183728A1 (en) * 2002-03-29 2003-10-02 The Boeing Company Aircraft control surface controller and associated method
US6785911B1 (en) * 2003-11-13 2004-09-07 Marvin J. Percher Automatic actuator for aerosol containers
US20050145712A1 (en) * 2004-01-06 2005-07-07 Bagnall Gary W. Spraying/misting for plants and animals
US7021555B2 (en) 2004-01-06 2006-04-04 Zoo Med Laboratories, Inc. Spraying/misting for plants and animals
AU2005244741B2 (en) * 2004-05-10 2010-08-05 Rubbermaid Commercial Products Llc Apparatus and method for dispensing post-foaming gel soap
US7540397B2 (en) 2004-05-10 2009-06-02 Technical Concepts, Llc Apparatus and method for dispensing post-foaming gel soap
EP2196121A3 (en) * 2004-05-10 2012-10-31 Technical Concepts, L.L.C. Apparatus and method for dispensing post-foaming gel soap
US20050247735A1 (en) * 2004-05-10 2005-11-10 Muderlak Kenneth J Apparatus and method for dispensing post-foaming gel soap
WO2005112724A1 (en) * 2004-05-10 2005-12-01 Technical Concepts, Llc Apparatus and method for dispensing post-foaming gel soap
CN100546531C (en) * 2004-05-10 2009-10-07 科技概念有限责任公司 The distributor of post-foaming gel soap
US8678233B2 (en) 2004-10-12 2014-03-25 S.C. Johnson & Son, Inc. Compact spray device
US8887954B2 (en) 2004-10-12 2014-11-18 S.C. Johnson & Son, Inc. Compact spray device
US7954667B2 (en) 2004-10-12 2011-06-07 S.C. Johnson & Son, Inc. Compact spray device
US20070199952A1 (en) * 2004-10-12 2007-08-30 Carpenter M S Compact spray device
US9457951B2 (en) 2004-10-12 2016-10-04 S. C. Johnson & Son, Inc. Compact spray device
US10011419B2 (en) 2004-10-12 2018-07-03 S. C. Johnson & Son, Inc. Compact spray device
US8091734B2 (en) 2004-10-12 2012-01-10 S.C. Johnson & Son, Inc. Compact spray device
US8061562B2 (en) * 2004-10-12 2011-11-22 S.C. Johnson & Son, Inc. Compact spray device
US7837065B2 (en) 2004-10-12 2010-11-23 S.C. Johnson & Son, Inc. Compact spray device
US8342363B2 (en) * 2004-10-12 2013-01-01 S.C. Johnson & Son, Inc. Compact spray device
US20060086824A1 (en) * 2004-10-21 2006-04-27 Nhc Corporation Automatic light-activated portable mist sprayer device
US8430337B2 (en) 2004-10-21 2013-04-30 Nch Corporation Light-activated portable aerosol mist sprayer device
US20080210772A1 (en) * 2004-10-21 2008-09-04 Robert Clarence Pearce Light-Activated Portable Aerosol Mist Sprayer Device
US20080023497A1 (en) * 2005-01-10 2008-01-31 Hyso Technology Llc Elongated nozzle configured for use with automated dispensers such as door handle sprayers and the like
US20080142555A1 (en) * 2005-04-28 2008-06-19 Persee Medica Device for Applying a Fluid to an Area to be Treated, Comprising a Timing System
US20080184614A1 (en) * 2006-10-02 2008-08-07 Higbee Bradley Apparatus and systems for using semiochemical compositions for insect pest control
US8590743B2 (en) 2007-05-10 2013-11-26 S.C. Johnson & Son, Inc. Actuator cap for a spray device
US8746504B2 (en) 2007-05-10 2014-06-10 S.C. Johnson & Son, Inc. Actuator cap for a spray device
US8381951B2 (en) 2007-08-16 2013-02-26 S.C. Johnson & Son, Inc. Overcap for a spray device
US9061821B2 (en) 2007-08-16 2015-06-23 S.C. Johnson & Son, Inc. Apparatus for control of a volatile material dispenser
US8556122B2 (en) 2007-08-16 2013-10-15 S.C. Johnson & Son, Inc. Apparatus for control of a volatile material dispenser
US8469244B2 (en) 2007-08-16 2013-06-25 S.C. Johnson & Son, Inc. Overcap and system for spraying a fluid
US20100320239A1 (en) * 2007-11-15 2010-12-23 Zobele Holding S.P.A. Automatic dual-spray dispenser device
WO2009062553A1 (en) 2007-11-15 2009-05-22 Zobele Holding S.P.A. Automatic dual-spray dispenser device
JP2011505232A (en) * 2007-11-15 2011-02-24 ツォベーレ ホールディング ソシエタ ペル アチオニ Dual spray type automatic dispenser
US9089622B2 (en) 2008-03-24 2015-07-28 S.C. Johnson & Son, Inc. Volatile material dispenser
US8387827B2 (en) 2008-03-24 2013-03-05 S.C. Johnson & Son, Inc. Volatile material dispenser
US7798424B2 (en) * 2008-08-15 2010-09-21 Po-Hui Lin Automatic air freshener spraying device
US20100038452A1 (en) * 2008-08-15 2010-02-18 Po-Hui Lin Automatic air freshener spraying device
US7878371B2 (en) 2008-09-04 2011-02-01 Hyso Technology Llc Controllable door handle sanitizer
US8668115B2 (en) 2009-10-26 2014-03-11 S.C. Johnson & Son, Inc. Functional operation and timing control improvements for dispensers
US20110095044A1 (en) * 2009-10-26 2011-04-28 Gene Sipinski Dispensers and Functional Operation and Timing Control Improvements for Dispensers
US8459499B2 (en) 2009-10-26 2013-06-11 S.C. Johnson & Son, Inc. Dispensers and functional operation and timing control improvements for dispensers
CN102616479A (en) * 2011-01-30 2012-08-01 上海携福电器有限公司 Electricity-saving fluid product diffuser
USD679793S1 (en) 2012-01-25 2013-04-09 S. C. Johnson & Son, Inc. Dispenser shroud
US9108782B2 (en) 2012-10-15 2015-08-18 S.C. Johnson & Son, Inc. Dispensing systems with improved sensing capabilities
US20150335004A1 (en) * 2014-05-21 2015-11-26 Derrick Gale Flying Insect Spray Apparatus
US9387501B2 (en) * 2014-05-21 2016-07-12 Derrick Gale Flying insect spray apparatus
US10183308B2 (en) 2014-10-14 2019-01-22 Conopco, Inc. Spraying device
US10385560B2 (en) 2014-10-14 2019-08-20 Conopco, Inc. Device for spraying an enclosure triggered by inclination of a rotatable lid
WO2018038638A1 (en) * 2016-08-22 2018-03-01 Общество С Ограниченной Ответственностью "Парфюм Вендинг" Device for dispensing liquid product
RU2657218C2 (en) * 2016-08-22 2018-06-08 Общество С Ограниченной Ответственностью "Парфюм Вендинг" Liquid product output device
US11117734B2 (en) * 2019-04-03 2021-09-14 Suterra, Llc Puffer device
US11820582B2 (en) 2019-04-03 2023-11-21 Suterra, Llc Puffer device
GB2594996A (en) * 2020-05-15 2021-11-17 Paul William Cain Jamie An insect control device
GB2594996B (en) * 2020-05-15 2022-05-04 Paul William Cain Jamie An insect control device

Also Published As

Publication number Publication date
BE800012A (en) 1974-01-01
JPS5333766B2 (en) 1978-09-16
AU5543673A (en) 1974-11-14
IT987886B (en) 1975-03-20
DE2326293A1 (en) 1973-12-06
CA984349A (en) 1976-02-24
CH572356A5 (en) 1976-02-13
GB1426583A (en) 1976-03-03
JPS4943211A (en) 1974-04-23
FR2185939A5 (en) 1974-01-04
AU468117B2 (en) 1976-01-08
HK72476A (en) 1976-11-26
AR199297A1 (en) 1974-08-23

Similar Documents

Publication Publication Date Title
US3739944A (en) Automatic periodically actuated spray dispenser
US3952916A (en) Automatic dispenser for periodically actuating an aerosol container
US3726437A (en) Aerosol spray dispenser
US3289886A (en) Timing device and method
US3589563A (en) Long period battery-operated aerosol dispenser
US4921150A (en) Automatic dispensing apparatus having low power consumption
US3677441A (en) Multiple aerosol dispenser
US3732509A (en) Apparatus to provide periodic movement
US3543122A (en) Automatic aerosol dispenser
US6467651B1 (en) System and method for dispensing soap
US6929150B2 (en) System and method for dispensing soap
US6568561B2 (en) Drive mechanism for a soap or foam dispenser
US5988440A (en) Soap dispenser
US3946702A (en) Automatic animal feeders
US3368717A (en) Dispenser
US3345915A (en) Snap action fluid escapement for obtaining intermittent rotary motion
US3627176A (en) Automatic spray dispenser for pressurized fluid
US4006844A (en) Apparatus for operating an aerosol container
US3858762A (en) Actuator assembly for an encased dispenser and method
US3411670A (en) Automatic dispenser for pressurized liquid
US3610471A (en) A periodical dispenser for aerosol containers
US3837532A (en) Automatic spray dispenser with integrated test apparatus
US4488666A (en) Treating agent dispensing apparatus for a washing appliance
US3632020A (en) Dispenser for aerosol bombs
US3779425A (en) Periodical dispenser for aerosol containers