
EE126 Lab 1, Fall 2005

VHDL, Verilog, and the Xilinx environment Tutorial

Table of Contents

1. Example Project 1: Full Adder with gate delay in VHDL
2. Example Project 2: Full Adder in Verilog
3. Lab 1 Assignment
4. Programming the FPGA
5. Lab Report Guidelines

Appendix A: VHDL and Verilog Standard Formats
Appendix B: Programming the Spartan2E FPGA
Appendix C: Troubleshooting the Xilinx Software

This tutorial is intended to familiarize you with the Xilinx environment and introduce the
hardware description languages VHDL and Verilog. The tutorial will step you the
implementation and simulations of a full-adder in both languages. Using this background
you will implement a four-bit adder in both VHDL and Verilog. In the future, HDL labs
can be done in either language.
You may want to refer to Appendix A to review the standard structures of VHDL and
Verilog modules.

1. Example Project 1: Full Adder in VHDL

On starting Xilinx Project Navigator, you should be faced with a screen like this:

Figure 1. Xilinx Project Navigator

Go to "File -> New Project"

Type in the name of your project (let’s use lab1_yourname), choose a location, and
specify the top-level module type as HDL (Hardware Description Language) as in Fig. 2.

Figure. 2

Click Next. Enter the settings shown in Figure 3. These are the parameters for the Xilinx
Spartan2E FPGA chip on our Digilab D2E boards.

Figure. 3

Click Next > Next > Next > Finish to close the window.

Go to “Project -> New Source”

Select VHDL Module and type in the filename (here we use fulladder), as shown in
Figure 4.

Figure. 4

We will build a 1-bit full-adder in this module. Let the tool generate the entity interface
for us. Set the parameters as shown in Fig. 5.

Figure. 5

After clicking “Next” and “Finish”, you should see a piece of code generated for you:

Figure. 6

Complete the description of full-adder by adding two lines describing how cout and sum
are generated, as in Figure 7:

Figure. 7

-- Constant can be used to declare a constant of a particular type. In this
case, Time.
-- The functional relation between the input and output signals is described
by the architecture body.
-- Only one architecture body should be bound to an entity, although many
architecture bodies can be defined.

Save your code and then double click “Synthesize” in the "Processes for current source"
window.

Figure. 8

A green check will appear next to “Synthesize – XST” if the software is able to
synthesize your code. If you see a red cross, you need to double check the syntax of your
code and synthesize again.

Simulation with ModelSim
Before implementing our design into hardware, we want to simulate the behavior of our
code and see if the function is correct logically. A software package called ModelSim has
been installed for this purpose. Expand "Design Entry Utilities" and double click on
"Launch ModelSim Simulator".

Figure. 9

A windows of ModelSim will show up.

Figure. 10

Select signal “a” by clicking it. Go to “Edit” -> “Clock” and “Define Clock” window will
show up:

Figure. 11

We will assign a clock signal to “a” with a “period” of 500ps and a 50% duty cycle. We
will apply clock signals with different frequencies to the inputs of the full adder such that
all possible input combinations are tested.

Apply clock signals to inputs “b” and “cin.” Set the period of “b” to be “1000” and
“cin” to be “2000” as shown in Figure 12

Figure.12

Now, go to the left side of ModelSim window,

Figure. 13

The three “force-freeze” commands you see here are the command-line versions of the
signal assignments we just made to “a”, “b” and “cin.”
By default, the simulation will step in increments of 100ps – you can change this step
time in the field shown in Figure 14.

Figure. 14

Run the simulation for 2000ps to cover all input combinations, by clicking the “run”
button (to the right of the step time field) four times. Waveforms should appear in the
wave window as in Figure 15.

Figure. 15

Now you can verify the correctness of output values of “sum” and “cout” depending
on different input values of “a”, ”b”, ”cin”. To end the simulation, close the main window
of ModelSim.

2. Example Project 2: Full Adder in Verilog

In this example we will repeat the design and simulation of a full adder, now using
Verilog. Open a new project with the same settings as example project 1 (with a new
name though).
Click Project > New Source. Name the source “fulladder” again, but this time highlight
“Verilog Module.”
Define the IO of module, with “a,” “b,” and “cin” as inputs and “sum” and “cout” as
outputs. Click Next > Finish.
The following piece of code should be generated automatically:

Figure 16.

In Verilog, a module’s inputs and outputs are listed at least twice – once in the IO list
following the module name, and again inside the module where they are assigned a
direction.
Verilog module outputs need to be registered. That is to say, the result of a logical
expression cannot be sent directly to an output pin, but must first be buffered by a
register. This is accomplished by declaring a register with the same name as the signal.
Since “sum” and “cout” are output pins, add registers as shown in Figure 17.

Figure 17.

Finally we need to add the logical expressions used to generate values for “sum” and
“cout.”
Refer to Table 1 for the Verilog syntax of common logical operators.

Table 1.

The final fulladder module should look as in Figure 18.

Figure 18

Note that the expressions for “sum” and “cout” are placed in an always block. An always
block is executed any time one of the signals in the sensitivity list (“a or b or cin” in this
case) changes. This tells the synthesizer to update the “sum” and “cout” registers only
when an input changes.

The procedure for synthesizing and simulating the fulladder module is the same as in the
VHDL section. Repeat this procedure and verify that the ModelSim waveforms are
correct.

3. Lab 1 Assignment

In both VHDL and Verilog, use the full-adder modules created in the above tutorials to
implement four-bit adder modules with the architecture shown in figure 19. To do this,
create a new source in the project where you designed the fulladder. You will have to
declare multi-bit signals and instantiate the fulladder modules in this new source.
Connect the “cout” pin of each full-adder to the “cin” pin of the next.

Refer to Appendix A for module instantiation format, multi-bit signal declarations etc.

Figure 19

Once the four-bit adder is able to synthesize, run ModelSim to test your design. Step the
simulation with several different input combinations and verify the adder’s functionality.
Record results and/or take some screenshots.

4. Programming the FPGA

If you would like to see your design implemented in an FPGA please follow the
instructions in Appendix B.

5. Lab Report Guidelines

Please write up a report on the HDL implementation and simulation of the four-bit adders
created in this lab. The lab report should at least include a purpose, procedure, results,
and conclusion. Please include all HDL in an appendix.

Appendix A: VHDL and Verilog Standard Formats

Standard Structure of a VHDL Design

entity entity_name is

Port(signal0 : in std_logic;
signal1 : out std_logic;
…
signaln : out std_logic_vector (3 downto 0));

end entity_name;

architecture Behavioral of entity_name is

-- component declarations
component comp_name is

Port(a : in std_logic;
…);

end component;

-- signal declarations
signal wire0, wire1 : std_logic;

-- main block
begin

-- behavioral and/or structural code here.

-- module instantiation
instance_name: comp_name

port map(signal0, signal1, …);

-- logical operations
signal3 <= (signal4 and signal5) xor signal8;

end

Standard Structure of a Verilog Design

module module_name(signal0,

signal1,
… ,
signaln);

// module signals
input signal0;
output [15:0] signal1;
…
output signaln;

// internal registers
reg register0;
reg signal1;

// internal signals
wire wire0;
wire wire1;

// behavioral and/or structural code here.

// module instantiation
module_name1 instance_name1 (signal0, signal1);

// logical operations
always @ (signal4 or signal5 or signal8)
begin

signal3 <= (signal4 && signal5) ^^ signal8;
end

endmodule

Appendix B: Programming the Spartan2E FPGA
Ultimately HDL modules are implemented in hardware such as ASICs (Application-
Specific Integrated Circuits) or FPGAs (Field-Programmable Gate Arrays). The Xilinx
software is able to create a programming file from a synthesized HDL module, which can
be downloaded into a Xilinx FPGA.

The following is a brief example of FPGA programming, using the fulladder module we
created in VHDL. We will program a Spartan2E FPGA on a DIO1 programming/testing
board.
In order to generate a programming file, we need to assign physical pins to each
input/output port we declared in VHDL. We will use switches SW1, SW2, and SW3 on
DIO1 as inputs “a”, “b”, “cin”, respectively. LEDs LD1 and LD2 on DIO1 will be used
as outputs “sum” and “cout”. The following table provides the mapping of the pins
from DIO1 to FPGA.

Table B.1

To assign physical pins to our VHDL signals in Xilinx ISE, go to “Project” -> “New
Source”. Click “Implementation Constraints File” and type in the file name (here we use
“fulladder_constraint”)
Click Next.
Click Next
Expand “User Constraints” in the Processes window and then double click “Assign
Package Pins”.
Xilinx PACE should be started. Referring to Table B.1, type in the FPGA pin location as
shown in Figure B.1.

Figure. B1

Save and then close PACE.

Now it’s time to implement our design into a more detail level. Double click

Make sure fulladder.vhd is selected in the Sources window, and double click “Implement
Design” in the Processes window.

Figure B.2

If everything goes right, you should see a green check on “Implement Design”

Now that we have a design implementation that specifies pin assignments we can
generate a programming file. Double click “Generate Programming File”

After this, there should be a file “fulladder.bit” created in your lab directory.
At this point, make sure the power cord of D2E board is plugged and the parallel cable is
connected to your PC parallel port. Also, SW1 of D2E should be switched to JTAG.
In the Processes window, expand “Generate Programming File” and double click on
“Configure Device.”
The iMPACT window will show up:
Select Configure Devices and click Next.
Select Boundary-Scan Mode and click Next.
Select “Automatically connect to cable and identify…” and click Finish.

Your board and chip should be automatically identified. The program will then ask you to
select a configuration file. Select “fulladder.bit” we just created and click Open.
If a message pops up asking “A BIT file describing…Are you sure you want to do this?”
click Yes.
Skip the warning message, if any shows up.
Right click on the Xilinx device in iMPACT window and select “Program”:
Click OK to download the bit stream into the FPGA
Once the FPGA has been programmed, test the functionality by changing the switches
and observing LEDs LD1 and LD2.

Appendix C: Troubleshooting the Xilinx Software

Most of the labs will involve implementing a digital design using a hardware description
language – Verilog or VHDL – and then simulating the design for testing. We will use
Xilinx ISE Project Navigator for HDL coding and synthesis, and ModelSim for
simulation.

All the computers in Halligan 120 have Xilinx ISE and ModelSim installed.

Xilinx ISE Project Navigator

To run Project Navigator click Start > Programs > Xilinx ISE 6 > Project Navigator

ModelSim

ModelSim will usually be run from the Project Navigator. ModelSim does require a
separate license. Before you can run ModelSim (if you have never run it before) you will
need to run the Licensing Wizard:

1. Click Start > Programs > ModelSim XE II > Licensing Wizard
2. Click “Continue”
3. Enter the location of the license file as
C:\Modeltech_xe_starter\win32xoem\license.dat
Click “OK”
4. Wizard should ask if it can add an environment variable – click “Yes”
5. Environment variable is added – click “OK”
6. Rerun the Licensing Wizard.
7. Click “Continue”
8. Verify that the license file location is still
C:\Modeltech_xe_starter\win32xoem\license.dat
Click “OK”
9. A notice should pop up saying “A perpetual license was found” – click “OK”
10. Click “Close.” You should now be able to run ModelSim.

Note: If you would like to have the software at home, you can download both Xilinx ISE
and ModelSim for free from the Xilinx website (www.xilinx.com).

1. Click on “Products & Services”
2. Under “Design Resources” click on “ISE Design Tools”
3. Click on “ISE WebPACK”
4. Click on “Register”
5. Click “Create an Account” and follow the instructions on obtaining a username
 and password. Requires confirmation emails etc.
6. Repeat steps 1 to 3, now click on “Download.” This should take you to a page
where you can download both “Complete ISE WebPACK Software” (for Project
 Navigator) and “Complete MXE Simulator” (for ModelSim).

http://www.xilinx.com/

7. Install both packages.
8. You will need to obtain a license to run ModelSim. To do so, click
Start > Programs > Modelsim XE II > Submit License Request
Follow online instructions.

