EE126 Lab 1, Fall 2005

VHDL, Verilog, and the Xilinx environment Tutorial

Table of Contents

1. Example Project 1: Full Adder with gate delay in VHDL
2. Example Project 2: Full Adder in Verilog

3. Lab 1 Assignment

4. Programming the FPGA

5. Lab Report Guidelines

Appendix A: VHDL and Verilog Standard Formats
Appendix B: Programming the Spartan2E FPGA
Appendix C: Troubleshooting the Xilinx Software

This tutorial is intended to familiarize you with the Xilinx environment and introduce the
hardware description languages VHDL and Verilog. The tutorial will step you the
implementation and simulations of a full-adder in both languages. Using this background
you will implement a four-bit adder in both VHDL and Verilog. In the future, HDL labs
can be done in either language.

You may want to refer to Appendix A to review the standard structures of VHDL and
Verilog modules.

1. Example Project 1: Full Adder in VHDL

On starting Xilinx Project Navigator, you should be faced with a screen like this:

[Eloses mpemmen st
T e B, e ben e bk ;
[wwaimrE iidas mun twi[sonjca & Aswini]

T Mo [B]

T e

AP

[T37-" I
Figure 1. Xilinx Project Navigator

Go to "File -> New Project”

Type in the name of your project (let’s use lab1l_yourname), choose a location, and
specify the top-level module type as HDL (Hardware Description Language) as in Fig. 2.

MNew Project ﬂ

— Enter a Mame and Location for the Praject

Project Mame: Project Location:

lab1 YunetappllyzhangO1WEET 26N ab1 |

— Select the twpe of Top-Level module far the Project

Top-Level Module T ype:

HOL |

¢ Back | [et = | Cancel | Help |

Figure. 2

Click Next. Enter the settings shown in Figure 3. These are the parameters for the Xilinx
Spartan2E FPGA chip on our Digilab D2E boards.

Mewproiet x|
Select the Device and Diesign Flow for he Proect
Property Hame Value
Dewvice Family -
Device wo2e200a
Package pg208
Speed Grade ha]
|
TopLevel Module Tupe HOL
Synthesiz Tool #5T WHDLAYenlog]
Sirnulator b odetim
Lienerated Simulation Language WHOL

< Back I Hest = I Canczl Help

Figure. 3

Click Next > Next > Next > Finish to close the window.

Go to “Project -> New Source”

Select VHDL Module and type in the filename (here we use fulladder), as shown in

Figure 4.
NewSource x|
@ Schematic
EI State Diagram
Teszt Bench ‘W aveform File Name:
EI User Document
Werilog Module Ifulladder
Werilag Test Fisture
t| WHOL Library Location:
0] /HDL Module [zahanghes1 264k
[F] wHOL Package
[wHDL Test Bench

v Add to project

< Black I Mewt = I Cancel Help

Figure. 4

We will build a 1-bit full-adder in this module. Let the tool generate the entity interface
for us. Set the parameters as shown in Fig. 5.

Define YHDL Source X|

Ervity Mame Ifulla-:lder

Architeckure Mame IEdﬁaviural

Poit Home Dirccton MSB LSE B
a in o
b n
i in
aum ouk
cof ouk
[it
in
L]
i
i
in
in
N j

cBeck [Mewt> | Caresl Help |

Figure. 5

After clicking “Next” and “Finish”, you should see a piece of code generated for you:

picracy IERL;

uze IEEE.STD LOGIC 1ied.ALL:

use JEEE.STD LOGTC ARTITH. ALL:
ise TEEE.STH LOGTC UMS IGNED. ALL;

Uncomment. the following lincs Lo usc the declorations thot ore
—— provided for instantiating Eiliox primitive componsnts.
-=llhrary UMISIN:
nae INISIN.VCompaonenta.all;

entity fulladder is
Port | & & 1n =td logio;
b : 1n atd locic:
cio : in =td logic:
Sum ¢ Our = n Log
cogt @ oout Sto logio))

cnd fulladder:

archicecture Behevwioral f fulladder i=

e pin

cend Hehawioral;

Figure. 6

Complete the description of full-adder by adding two lines describing how cout and sum
are generated, as in Figure 7:

architecture Behawvioral of fulladder is
signal =1,s2,=53: =std ulogic:
constant gate delay: Time := 100 ps:

begin
21 <= (a xor b)) after gate delay;
22 <= (cin and =1) after gate delay:
23 <= (a and b) after gate delay;
sum <= (51 xor cin) after gate delay;
cout <= (22 or s3] after gate delay:
end EBehawvioral;

Figure. 7
-- Constant can be used to declare a constant of a particular type. In this
case, Time.
-- The functional relation between the input and output signals is described
by the architecture body.
-- Only one architecture body should be bound to an entity, although many
architecture bodies can be defined.

Save your code and then double click “Synthesize” in the "Processes for current source™
window.

Proczszes far Sowce: 'fuladder-behaviaral” I

-] AddEsisling Souce

- Creale Mew Souce

-G Design Eniry Utilties

G Crzate Schemalic Spmbol
“ Launch bodelSim Simulator
| Yigw Carmmand Line Log File

El Wiew WHOL Instantiation Temnplate
Uszer Canshrairt=

% Crzate Timing Consiraires
e &szign Package Pinz
g Create Area Constrairts
L Edit Consfraints [Test)
Swnthesize - <571
Implerment D azign
Generate Programming File

OO0

]
H

RS Procers e I

Figure. 8

A green check will appear next to “Synthesize — XST” if the software is able to
synthesize your code. If you see a red cross, you need to double check the syntax of your
code and synthesize again.

Simulation with ModelSim

Before implementing our design into hardware, we want to simulate the behavior of our
code and see if the function is correct logically. A software package called ModelSim has
been installed for this purpose. Expand "Design Entry Utilities" and double click on
"Launch ModelSim Simulator".

|
Processzss for Sowrce: "uladderbehavioral'! |
E Add Exizling Sowce
] Create Mew Sounse
& Desion Enby Uiliies
LM Create Schematic Symbol
“ Launch M odelSim Simulatar
@ Wigwr Command Line Log File
LB Wiew WHDL Instariztion Templake
=--F UssrConstanis
% Craate Timitg Conztraints

Azzign Fackage Pn:
E—% Cr=ate &rea Conshiants
{.@ Edit Coretiants [Tex)
aunthesize - KaT
Irplerment Desgn
Generate Frogramming Fie

B process view I

56E
(IO0

Figure. 9

A windows of ModelSim will show up.

T71Mo delsim XE INI/Starter 6.0a - Custom Xilink Yersion

File Edit Wiew Format Compile Simulate Add Tools Window Help
[DF w8 & PO AL ﬁ” @%@3” + | R e :@;@H o] /H Iy)gj:ﬂ'“ LT o
—_— FTEF]

warkspace Hoft X | Obiects Flz
7

default

Instance Design unit__| Design unit by| |¥]Mame Value
BT fulladder hillzdderbe. . fure
& lne__22 fulladderfbe... Process
@ lne_23 fulladderfbe. . Process
& line_24 tulladderfbe. . Process
@ lne_25 tulladderfbe. . Process
@ line_26 fulladderbe. . Procsss
il std_logic_unsigned std_logic_un... Package
W st logic_siith std_logic_arith Package
i st logic_1164 std_logic_ 1. Package

W standard standard Package:

“ 2 R A |=q]
. i [Bpstotns [Now 0 ps Dehta:0
Im Librany 1 G sm J & Files LiE 1 7 L aml wave

Transcript

Loading C: \Mode lech_se_starterwin3Zxoem/ _izes. std_logic_1 164(bacy)
Loading C: \Modetech_we._staterwin32zoem//ieee.std_logic_arith(body]
Loading C:‘Modelkech_we_starterwiin3Zzoem/../iees.std_logic_unsigned(body]
1 Loading work, fulladderbeshavior]

. main_pane mdiinterior. cs.wm paneset cli_0Lwh.clip.cs

4 . main_pane workspace

#.main_pane.signalsinterior.cs

WS IM 2

MNow: Dps Delta: 0 sim:Aulladder - Limited “isibility Region

Figure. 10

Select signal “a” by clicking it. Go to “Edit” -> “Clock” and “Define Clock” window will
show up:

Clock Name——————
’;n:.n"fulladder.f'a
—affset————— [Duty————
jo |50
— Period —LCancel
{500 |
LogicWalues————
’7High: |1 Lo |EI
4
'TT
ant
un

L]

0

[T]

First Edge—— —

’; Riizing ¢ Falling —
ak. | Cahicel I

Figure. 11

We will assign a clock signal to “a” with a “period” of 500ps and a 50% duty cycle. We
will apply clock signals with different frequencies to the inputs of the full adder such that
all possible input combinations are tested.

Apply clock signals to inputs “b” and “cin.” Set the period of “b”” to be *“1000” and
“cin” to be “2000” as shown in Figure 12

[Define Clock 3 -7 Define Clock x|
Clock Mame Clack M ame
’;n:ffulladdew'b ’;n:.-"fulladdew'cin
offset————— [Duby—— —offset———— Dty
i |50 [0 |50
— Period Cancel — Period — Cancel
[100d | [z000 |
Logic Values—————— Logic Yalues———————
’7High: |1 Low: |0 ’:igh: 1 Low: |0

First Edge——— ! First Edge—
’717 Rizing Falling ’; Rizsing ©~ Falling

OF. I Ear‘u:ell ok | Eancell

Figure.12

Now, go to the left side of ModelSim window,

Wwaorkspace H A A | Objects ——
|T||nstance |Design unit |Design unit by
BT fulladder fulladder(be. e

o line__22 fulladderbe... Process

& line__23 fulladder(be... Frocess

o line__24 fulladderbe... Process

@ line__25 fulladder(be... Frocess

o line__ 26 fulladderbe... Process

B std_logic_unzigned ghd_logic_un... Package

W std_logic_arith ztd_logic_arith Package

B std_logic_1164 gtd_logic_1... Package

B standard standard Fackage
«| | -
l JIL Library l &l sim J E! Files KiE]

-- Loading package standard

-- Loading package std_logic_1164

-- Loading package ztd_logic_arith

-- Loading package std_logic_unzigned

-- Compiling entity fulladder

-- Campiling architecture behaviaral of fulladder

waim -t 1pz fulladder

Loading C:\Modeltech_xe_starterswin32roen/. . atd standard

Loading C:hModelech_we_starterwind2ioem,/.. deee. std_logic_1164(body]
Loading C:\Modeltech_xe_starteriwin32aoem/. feee std_logic_arith[body]
Loading C:hModelech_we_starterwind2ioem,/.. deee. sid_logic_unzigned(body)
Loading wark. fulladder/behaviaral]

.main_pane.mdi.interior. cz.vm. paneset. ol_0wi clip.cz

It .main_pane.warkspace

.main_pane. signalz.interior.cz

force freeze sim: Afulladderda 1 0, 04250 psh -+ 500

force -freeze sim:fulladder/b 1 0, 014500 ps} -r 1000

force -freeze sim:Afulladder/cin 10, 041 ns} -r 2000

force -freeze sim: Afulladdertcin 10, 041 ned-r 2000

HHEHTH

AN ind ¥ W

|N0w: 0 ps Delta: 0 |sim:ffu||adder— Lirnited
Figure. 13

The three “force-freeze” commands you see here are the command-line versions of the
signal assignments we just made to “a”, “b” and “cin.”

By default, the simulation will step in increments of 100ps — you can change this step
time in the field shown in Figure 14.

Tools Window Help

| EF[To0psHELEREY I ® B

Figure. 14

Run the simulation for 2000ps to cover all input combinations, by clicking the “run”
button (to the right of the step time field) four times. Waveforms should appear in the
wave window as in Figure 15.

/

1l 3 K1 A | |~
Figure. 15

Now you can verify the correctness of output values of “sum” and “cout” depending
on different input values of “a”, ”’b”, ”cin”. To end the simulation, close the main window
of ModelSim.

2. Example Project 2: Full Adder in Verilog

In this example we will repeat the design and simulation of a full adder, now using
Verilog. Open a new project with the same settings as example project 1 (with a new

name though).
Click Project > New Source. Name the source “fulladder” again, but this time highlight

“Verilog Module.”
Define the 10 of module, with “a,” “b,” and “cin” as inputs and “sum” and “cout” as

outputs. Click Next > Finish.

The following piece of code should be generated automatically:
module fulladder (a,b,cin, sum,cout) ;
input a:

input k:

input cin;

output sum;

output cout;

endmodule

Figure 16.

In Verilog, a module’s inputs and outputs are listed at least twice — once in the 10 list
following the module name, and again inside the module where they are assigned a
direction.

Verilog module outputs need to be registered. That is to say, the result of a logical
expression cannot be sent directly to an output pin, but must first be buffered by a
register. This is accomplished by declaring a register with the same name as the signal.
Since “sum” and “cout” are output pins, add registers as shown in Figure 17.

module fulladder (a,b,cin, sum, cout) ;
input a:
input b:
input cin:
output =umn;?
output cout;

regqg 3ums
redg cout;

Figure 17.

Finally we need to add the logical expressions used to generate values for “sum” and

“cout.”
Refer to Table 1 for the Verilog syntax of common logical operators.

Operator | Verilog Syntax
AND &&
OR |
EDR M
NOT J
Table 1.

The final fulladder module should look as in Figure 18.

module fulladder (a,b,oin, sum, cout)
input a:
input k:
input oing
output sum:
output cout:

redq 3unr
reg cout;

always [ia or b or cin)

hegin
sum <= a " b ** cin:
cout <= (a &£& k) || [a &% cin) || (b && cin):;
ernd
endmodule
Figure 18

Note that the expressions for “sum” and “cout” are placed in an always block. An always
block is executed any time one of the signals in the sensitivity list (“a or b or cin” in this
case) changes. This tells the synthesizer to update the “sum” and “cout” registers only
when an input changes.

The procedure for synthesizing and simulating the fulladder module is the same as in the
VHDL section. Repeat this procedure and verify that the ModelSim waveforms are
correct.

3. Lab 1 Assignment

In both VHDL and Verilog, use the full-adder modules created in the above tutorials to
implement four-bit adder modules with the architecture shown in figure 19. To do this,
create a new source in the project where you designed the fulladder. You will have to
declare multi-bit signals and instantiate the fulladder modules in this new source.
Connect the “cout” pin of each full-adder to the “cin” pin of the next.

Refer to Appendix A for module instantiation format, multi-bit signal declarations etc.

B3] Al3] B[Z] AlZ] Bl1]

L 10 1

[1] B[Ol Af0]

FA [* FA FA [* FA <07
Sumf4] Suml3] Sum[2] Suml1] Sum[0)
Figure 19

Once the four-bit adder is able to synthesize, run ModelSim to test your design. Step the
simulation with several different input combinations and verify the adder’s functionality.
Record results and/or take some screenshots.

4. Programming the FPGA

If you would like to see your design implemented in an FPGA please follow the
instructions in Appendix B.

5. Lab Report Guidelines

Please write up a report on the HDL implementation and simulation of the four-bit adders
created in this lab. The lab report should at least include a purpose, procedure, results,
and conclusion. Please include all HDL in an appendix.

Appendix A: VHDL and Verilog Standard Formats

Standard Structure of a VHDL Design

entity entity_name is
Port(signalO : in std_logic;
signall : out std_logic;

signaln : out std_logic_vector (3 downto 0));
end entity_name;

architecture Behavioral of entity_name is

-- component declarations
component comp_name is
Port(a: in std_logic;
D

end component;

-- signal declarations
signal wire0, wirel : std_logic;

-- main block
begin

-- behavioral and/or structural code here.
-- module instantiation
instance_name: comp_name

port map(signal0, signall, ...);

-- logical operations
signal3 <= (signal4 and signal5) xor signal8;

end

Standard Structure of a VVerilog Design

module module_name(signalO,
signall,

éiér,laln);

// module signals
input signal0;
output [15:0] signall;

output signaln;

[l internal registers
reg register0;
reg signall,;

[l internal signals
wire wire0;
wire wirel;

/I behavioral and/or structural code here.

// module instantiation
module_namel instance_namel (signal0, signall);

/' logical operations
always @ (signal4 or signal5 or signal8)
begin
signal3 <= (signal4 && signal5) ~ signal8;
end

endmodule

Appendix B: Programming the Spartan2E FPGA

Ultimately HDL modules are implemented in hardware such as ASICs (Application-
Specific Integrated Circuits) or FPGAs (Field-Programmable Gate Arrays). The Xilinx
software is able to create a programming file from a synthesized HDL module, which can
be downloaded into a Xilinx FPGA.

The following is a brief example of FPGA programming, using the fulladder module we
created in VHDL. We will program a Spartan2E FPGA on a DIO1 programming/testing
board.

In order to generate a programming file, we need to assign physical pins to each
input/output port we declared in VHDL. We will use switches SW1, SW2, and SW3 on
DIO1 as inputs “a”, “b”, “cin”, respectively. LEDs LD1 and LD2 on DIO1 will be used
as outputs “sum” and “cout”. The following table provides the mapping of the pins
from DIO1 to FPGA.

VHDL Signal | DIO1 Net | Required FPGA Pin
Assignment
a SW1 P126
b SW2 P129
cin SW3 P133
sum LDl P154
cout LD2 Pl6l

Table B.1

To assign physical pins to our VHDL signals in Xilinx ISE, go to “Project” -> “New
Source”. Click “Implementation Constraints File” and type in the file name (here we use
“fulladder_constraint™)

Click Next.

Click Next

Expand “User Constraints” in the Processes window and then double click “Assign
Package Pins”.

Xilinx PACE should be started. Referring to Table B.1, type in the FPGA pin location as
shown in Figure B.1.

1/0 Hame| /0 Direction| Loc Bank 150 Std.
ZLIM Cutpt F154 BAMNEZ
oLt Cutpuit F161 BarET
cin [Fpuat F133 BAMEZ
b Input F124 BAMNE2
a [t F126 BAMES
Figure. B1

Save and then close PACE.

Now it’s time to implement our design into a more detail level. Double click

Make sure fulladder.vhd is selected in the Sources window, and double click “Implement
Design” in the Processes window.

2] x|
Processes fu:ur_S ource: "fulladder-behaviaral' I;l
------- o Create Schernatic Syrbol
------- H Launch ModelSim Simulator
....... @ View Command Line Log File
------- Wiew WHOL [nstantiation Template
=& User Constraints
------- % Create Timing Constraints
[Azzign Package Finz
:-E Create Area Conztraints
------- .@ Edit Cangtraints [T ext]
|:—:|Gr_‘r;éfJ Sunthesize - €5T
------- @? View Syrthesiz Report
....... mE View RTL Schematic
....... Gcf’ Check Syntax
R B 4 |miplemnent Design
[]G Generate Programming File —

1| [o[
B Process Wiew I

Figure B.2
If everything goes right, you should see a green check on “Implement Design”

Now that we have a design implementation that specifies pin assignments we can
generate a programming file. Double click “Generate Programming File”

After this, there should be a file “fulladder.bit” created in your lab directory.

At this point, make sure the power cord of D2E board is plugged and the parallel cable is
connected to your PC parallel port. Also, SW1 of D2E should be switched to JTAG.

In the Processes window, expand “Generate Programming File” and double click on
“Configure Device.”

The iMPACT window will show up:

Select Configure Devices and click Next.

Select Boundary-Scan Mode and click Next.

Select “Automatically connect to cable and identify...” and click Finish.

Your board and chip should be automatically identified. The program will then ask you to
select a configuration file. Select “fulladder.bit” we just created and click Open.

If a message pops up asking “A BIT file describing...Are you sure you want to do this?”
click Yes.

Skip the warning message, if any shows up.

Right click on the Xilinx device in IMPACT window and select “Program”:

Click OK to download the bit stream into the FPGA

Once the FPGA has been programmed, test the functionality by changing the switches
and observing LEDs LD1 and LD2.

Appendix C: Troubleshooting the Xilinx Software

Most of the labs will involve implementing a digital design using a hardware description
language — Verilog or VHDL - and then simulating the design for testing. We will use
Xilinx ISE Project Navigator for HDL coding and synthesis, and ModelSim for
simulation.

All the computers in Halligan 120 have Xilinx ISE and ModelSim installed.

Xilinx ISE Project Navigator

To run Project Navigator click Start > Programs > Xilinx ISE 6 > Project Navigator
ModelSim

ModelSim will usually be run from the Project Navigator. ModelSim does require a
separate license. Before you can run ModelSim (if you have never run it before) you will
need to run the Licensing Wizard:

1. Click Start > Programs > ModelSim XE Il > Licensing Wizard

2. Click “Continue”

3. Enter the location of the license file as
C:\Modeltech_xe_starter\win32xoem\license.dat

Click “OK”

4. Wizard should ask if it can add an environment variable — click “Yes”
5. Environment variable is added — click “OK”

6. Rerun the Licensing Wizard.

7. Click “Continue”

8. Verify that the license file location is still
C:\Modeltech_xe_starter\win32xoem\license.dat

Click “OK”

9. A notice should pop up saying “A perpetual license was found” — click “OK”
10. Click “Close.” You should now be able to run ModelSim.

Note: If you would like to have the software at home, you can download both Xilinx ISE
and ModelSim for free from the Xilinx website (www.xilinx.com).

1. Click on “Products & Services”

2. Under “Design Resources” click on “ISE Design Tools”

3. Click on “ISE WebPACK?”

4. Click on “Register”

5. Click “Create an Account” and follow the instructions on obtaining a username
and password. Requires confirmation emails etc.

6. Repeat steps 1 to 3, now click on “Download.” This should take you to a page
where you can download both “Complete ISE WebPACK Software” (for Project
Navigator) and “Complete MXE Simulator” (for ModelSim).

http://www.xilinx.com/

7. Install both packages.

8. You will need to obtain a license to run ModelSim. To do so, click
Start > Programs > Modelsim XE 11 > Submit License Request
Follow online instructions.

