高エネルギージェット天体の 偏光分光観測

深沢泰司、川端弘治、植村誠、吉田道利、田中康之、伊藤亮介、高木勝俊 (広大理、宇宙科学センター)、笹田真人(京大理)

高エネルギージェット天体

X線ガンマ線で明るいジェットを伴う系外突発天体

ブレーザーなどの系外ジェット天体 (電波銀河などのRadio-loud銀河も含む)

ガンマ線バースト

系内ジェット天体?

突発天体を重要天体にするなら、偏光(分光)モニターは非常に有効

大型望遠鏡では、できない。 世界の他の中型望遠鏡に対してユニーク かなた望遠鏡の例

フェルミ衛星(今後5年以上)、CTA-TeV(3年後)、CALET(数年後) などによる高エネルギー天体のガンマ線観測が続く

偏光装置の開発…広島大学の協力できるか???

高エネルギージェット天体の可視偏光観測の重要性

磁場の情報を引き出す

複数成分の分離

各成分の偏光度や偏光角の違いを利用

高エネルギー成分の放射機構の情報

BLAZAR

電波からガンマ線までジェット放射(シンクロトロン、逆コンプトン) が明るい

フェルミ衛星により、ガンマ線で数年間の連続モニター中 電波、可視光領域で強い偏光。高エネルギー側も偏光の可能性。 多波長偏光観測にふさわしい天体

BLAZARの放射モデル

Leptonic model 電子陽電子が放射源

Synchrotron Self-Compton

ジェット中の電子がシンクロトロ ン放射した光子を、そばの電子 が逆コンプトン散乱

BL Lac, FSRQ

External Compton

別の場所(降着円盤、broad line Region、分子雲トーラス)から来 た光子を、ジェットの電子が 逆コンプトン FSRQ

降着円盤(紫外線)、broad line region(可視から紫外)、分子雲 トーラス(遠赤外線)が明るい

かなた望遠鏡によるブレーザー集中観測

<u>全部で42天体</u>

2008年5月~2009年秋

Fermiでも見えている天体

詳細は、Ikejiri+11

1ES 0323+022	MisV 1436	PKS 1222+216	3EG 1052+571
1ES 0647+250	Mrk 421	PKS 1502+106	QSO 0324+34
1ES 0806+524	Mrk 501	PKS 1510-089	
1ES 1959+650	OJ 287	PKS 1749+096	
1ES 2344+514	OJ 49	PKS 2155-304	
3C 371	ON 231	QSO 0454-234	
3C 454.3	ON 325	QSO 0948+002	
3C 66A	OQ 530	QSO 1239+044	
3C 273	PG 1553+113	RX J1542.8+612	
3C 279	PKS 0048-097	S2 0109+22	
AO 0235+164	PKS 0215+015	S4 0954+65	
BL Lac	PKS 0422+004	S5 0716+7143	
H 1722+119	PKS 0754+100	S5 1803+78	
4C 14.23			

フレア時に、偏光度が非常に高くなる(40-50%)場合もある

Sasada+08

Uemura+10

偏光の変動の振る舞い

TeVフレア、可視偏光回転、電波ノットの放出が同時期に観測された

Marscher+08

Abdo+10

フレアに関係するジェットの磁場構造の情報(3C279)

3C454.3 偏光面の回転現象が複数回(回転向きも一定でない)

フレアに伴うブレーザーの可視偏光の回転は、最近検出され始めた

(広島大学かなた望遠鏡でも、いくつか) ジェットの構造に対して制限を与える Marscher+08,10; Sasada+09

<u>1. helical magnetic field model</u> (Marscher et al. 2008)

2. bend jet model

ガンマ線放射領域の位置は:

 $\Delta r_{\text{event}} \sim 10^{19} \left(\Delta t_{\text{event}} / 20 \, \text{days} \right) \left(\Gamma_{\text{jet}} / 15 \right)^{2} Q_{\text{m}}^{5}$ シュワルツシルド半径

シナリオ1と3は、常に同じ方向の偏光面回転を予測するが、3C279では過去に逆方向の回転が観測されている(Larionov+08).3C454.3でも観測されている(Sasada+10)。

偏光度を連続的に追える天体は限られている。 明るい天体で、大きなフレアは、数が限られる(可視だと季節外の 場合も)。

現状では、比較的近い天体に限られている。 CTAIこよるTeVガンマ線観測が始まる 暗いTeVブレーザーが多数見つかる TeVブレーザー(HBL)は、可視域では暗めで低い偏光度 精度良い観測が必要(母銀河光の混入にも注意)

近赤外分光モニター観測により、BLR光子を種とした逆コンプトン 散乱をプローブ (フェルミ衛星との同期観測)

ガンマ線放射起源は複雑 種光子の情報が必要 プロトン放射の可能性も

External Compton

別の場所(降着円盤、broad line Region、分子雲トーラス)から来 た光子を、ジェットの電子が 逆コンプトン FSRQ

降着円盤(紫外線)、broad line region(可視から紫外)、分子雲 トーラス(遠赤外線)が明るい

Spectroscopy with HOWPol

AT Mrk 421 HOWPol David P. requested. 最も明るいTeVブレーザーの1つ 3×10 TeVブレーザーは、偏光度が低い Itoh 55200.0 55400.0 55600.0 MID (d) 11.5 R band 12 V band Flux Flux [mag] 12.5 13 13.5 14 14 5 9 Polarization Degree [%] R band 8 **Polarization** V band 7 Needs further 6 5 systematic corrections. 4 З 2 Ξ 1 0 55150 55200 55250 55300 55350 55400 55450 55500 55550 55600 55650

Source = Mrk 421 Duration = 604800

MJD [day]

新しい部類のガンマ線AGN:電波銀河

Blazarの母集団 ジェットを斜めから見ているので、ビー ミング効果が弱く、明るくない

EGRET: Cen A と2, 3の電波銀河からのGeVガンマ線放射の兆候 3EG catalog: Hartman et al. (1999) 他に、3C111 and NGC6251? see also Sreekumar et al. (1999)

2000年代に入り、M87からTeVガンマ線が検出された

ジェットをいろいろな角度から見ることにより、ジェットの構造の情報を得られる(Blazarはビーミングで、ジェット中心部のみ見見え)

フェルミでは、数か月で代表的な3つの電波銀河が検出された

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.

Cen A(NGC5128)

KANATA optical/NIR observations

2.0Yamazaki+12 1.5 Polarization <2% Ъ° В 1.0 Interstellar polarization 0.5 Is estimated to be 1.47% 88 Systematic error is 0.3% PA (deg) 120 ¢. \Rightarrow Upper limit 1.5% 60 2010 Oct. 2012 Mar. Ο. 55500 55600 55700 55800 55000 56000 Modified Jurian Day NGC1275 3e-14 観測日 /s/cm²/Å) Spectroscopic observations 2e-14 2010 Aug.~2011 Feb. Flux 1e-14 Variability of the continuum is <15%. 0 5000 6000 7000 8000 9000 1000 Wavelength (Å)

偏光分光観測が重要

偏光分光観測が重要

新しい部類のガンマ線AGN:

Narrow-Line Radio-loud Seyfert galaxy (NLSy1)

PMN J0948+0022 ガンマ線光度~10⁴⁸ erg s⁻¹

- 小さいBH質量 (10^{6.7}-10^{8.2} M.) でとても高い降着率 (~90% Eddington)
 (Blazarや電波銀河は、10⁷-10¹⁰M.)
- ・Blazarや電波銀河と異なり、渦巻銀河に含まれる
- ・電波の構造は非常にコンパクト(ジェットやローブが不明)

降着円盤とジェットの関係を探るため に重要な天体

フェルミで検出されたNLSy1の多波長スペクトル

ブレーザーに比べてdisk放射が強く、放射スペクトルも複雑 可視放射を区別するにい偏光観測が非常に有効

かなた望遠鏡によるNL RL Sy1の系統的な偏光観測 偏光度が高い傾向にある。 偏光度5%前後のものは、不定性大きい。 もっと暗い天体まで精度良くサーベイしたい。

2m以下の望遠鏡だと、こうした電波銀河やNLRLSy1などの偏光 観測は限られる

偏光分光観測が必要

大型望遠鏡では、突発フレア対応やモニター観測できない

CTA TeV観測で、さらに新たな種族の暗いジェット天体が見つかる 可能性がある

多波長スペクトルと正体の理解には、可視偏光が重要

GRB残光の偏光メカニズムと磁場

GRBのジェットの内部構造をプローブする重要な手段

シンクロトロン放射: 種磁場の生成 Cf. 當真氏講演

- ✓ プラズマ不安定性(Weibel instability)によるランダム磁場生成・増大(フィラメント 状の構造へ) (Medvedev & Loeb 1999など)
- ✓ フィールド磁場の流体力学的不安定性による増強(Sironi&Goodman 07; Inoue+ 11など)

Kato & Takabe 11

コヒーレントな磁場を持つ独立なパッチの集合 Gruzinov & Waxman (1999)

Local rest frame での磁場 coherent length /~c τ (τ: shockからの固有時間)

- → Coherentなパッチの数~ 50
- → 偏光度 ~60% / v50 ~ 8.5%
- 完全にはキャンセルアウトし ない数%の偏光

ランダム磁場の圧縮+視線からわずかに反れたジェットのビーミング効果 (Sari 1999; Rossi+ 2004など)

視線から反れるほど偏光大 ジェットブレーク前後で方位角が90°変化

数個のGRBで爆発から0.2~1日後で1-4%の偏光 0.2日より早期のデータは殆ど無かった

GRB 091208B

Normalな 残光の 特性

Gamma-ray prompt emission

 T_{90} (15-350keV) = 14.9±3.7sec (GCN Rep. 266.1) $T_0 \ge T_0$ +8 sec の間に2つのピーク(前者の方が暗くてソフト) 時間平均スペクトルは単純指数則 指数 1.74±0.11 $E_{\gamma,iso} > 2 \times 10^{52}$ erg (15-150keV)

X-ray afterglow 光度曲線にバンプやミニフレア (3-10keV) 1.6×10⁻¹⁰ erg/cm²/sec at *T*₀+156 sec 光度曲線は broken power-law で表される *T*₀+3.1×10⁵sec にジェットブレーク? ブレーク前 α=1.1 後 α=2.3 *N*_H = (2.9±0.5)×10²¹cm⁻² from best-fit spectrum

Optical afterglow

R=16.1 mag at T_0 +77sec (Nakajima+ 09) Spectroscopic z = 1.063 (Perley+ 09)

Uehara+12

Swift/BAT光度曲線

Swift/XRT光度曲線

GRB 091208B: HOWPol 観測

GCN Notice at 09:50:23 (*T_o*+25秒) Exposure started at 09:52:27 (*T_o*+149秒) **最も早い観測開始例** (1000秒以内の観測報告例としては3例目) Cf. Mundell+ 2007, Science; Steele+ 2009, Nature

P = 10.4% ± 2.5% (t = 149 - 706 s)
※器械偏光補正精度 ∠p~0.4%、
星間偏光(天の川銀河<0.5%)</p>

Uehara, Toma, KSK et al. (2012)

早期残光偏光観測(<104秒) サマリー

- GRB 060418 (Mundell+ 07; 観測開始 T_o+203 s; z=1.489) Liverpool ノーマルな残光 (external forward shock) 2m/RINGO 無偏光 (upper-limit p < 8 %)
- GRB 090102 (Steele+ 09; 観測開始 T₀+161 s; z=1.547)
 急減光期(emission from external reverse shock)
 p=10%±1%
- GRB 091208B (Uehara+12; 観測開始 T₀+149 s; z=1.063)
 ノーマルな残光 (external forward shock)
 p~10%±3%
- GRB 111228A (This study; 観測開始 T₀+243s; z=0.714)
 ノーマルな残光 ? ただし進化ゆっくり (可視光ピーク~T₀+10³s その後 α=-0.6)
 p~17%±4%(増光期)→10%±1%付近; 方位角 おおよそ90°回転
- GRB 121011A (This study; 観測開始 T_0 +92 s; z不明) ノーマルな残光?(可視光ピーク~ T_0 +650s 前後で α = +1 → -1) 無偏光 (upper-limit p < 4%) Kanata1.5m/HOWPol

もっと暗くなるまで偏光観測したい 偏光の変化の測定をすることにより、ジェット構造を制限

偏光測定精度を向上したい 偏光が弱いものについて、上限値ではない値を求めたい。

X線でもプロンプト放射の偏光観測が進みつつある 残光の可視偏光とともに相補的