
 1

Verilog/ VHDL Code:
Suggested List of Deliverables

I. Introduction

In order to simplify benchmarking and any further optimizations of the submitted
Verilog/VHDL implementations, we propose a uniform structure of all deliverables.

All implementations that share the same source code, except of different values of
generics and/or constants, should be submitted as a single .zip file.

In order to prepare this .zip file, please follow the instructions given below.

Please prepare the top-level folder called

<Authenticated_Cipher_Name>_<Implementation_Team_Name>

e.g., ASCON_GMU.

Within this folder, please create the following structure of second-level folders:

|-docs
|-src_rtl
|-src_tb
|-scripts
|-KAT
|-bd
|-results

The recommended content of these folders is described below:

II. List of Deliverables

1. Assumptions

File: docs/assumptions.pdf or docs/assumptions.txt
 (depending on the file format used)

This file should contain at least the following information:

A. Hardware description language used

VHDL, Verilog, or Mixed (VHDL and Verilog).

B. Type of implementation

High-speed or lightweight.

 2

C. Use of hardware description language source files provided as a part of the
Development Package

Please include the following table:

File name Used
(Y/N)

Release number*

Functional
modifications**

(Y/N)
PreProcessor.vhd
PostProcessor.vhd
fwft_fifo.vhd
* The Release number refers to a version of the Development Package for the CAESAR

Hardware API (e.g., v1.0-1, v1.0-3, etc.)
** Functional modifications refer to any changes other than the changes related to the list

and default values of generics.

D. Supported types and order of segment types

Please list an order of segment types supported by your implementation, using the
following abbreviations:

 npub : public message number
 nsec : secret message number

 ensec : encrypted secret message number
 ad : associated data
 ad_npub : associated data || npub
 npub_ad : npub || associated data
 data : data (plaintext/ciphertext)
 data_tag : data (plaintext/ciphertext) || tag
 tag : tag

Please note that according to the CAESAR Hardware API:

• ad, ad_npub, npub_ad, data, and data_tag can be divided into multiple segments
of the same type (each limited to maximum of 216-1 bytes for single-pass
algorithms, and 211-1 for two-pass algorithms)

• npub, nsec, ensec, and tag are always composed of only one segment.

For clarity, please provide the order of segment types for all four cases:

a. input to encryption, e.g.: nsec npub_ad data
b. output from encryption, e.g.: ensec data_tag
c. input to decryption, e.g.: ensec npub_ad, data_tag
d. output from decryption, e.g.: nsec data

Please note that all of the above orders can be expressed using the following single option
of the aeadtvgen app:
--msg_format nsec npub_ad data_tag

 3

E. Deviations from the CAESAR Hardware API v1.0 specification

These deviations may include deviations regarding the following components of the API:

B.1 Minimum compliance criteria

Please list all deviations from the criteria described in Section 1 of the CAESAR API
specification.

For example:
• the core supports only encryption,
• the core handles only associated data, messages, and ciphertexts composed of full

blocks
• AD and/or message is assumed to be padded before entering the AEAD core
• unused portions of the last block are not cleared before being sent to the output

port do
• the AEAD core does not support empty AD and/or an empty message
• the supported maximum sizes of AD/plaintext/ciphertext are smaller than the

limits described in the API specification and its appendix (232-1 for single-pass
algorithms, and 211-1 for two-pass algorithms)

• the core requires two or more clocks (with different frequencies)
• the widths of the PDI , DO, or SDI data ports do not match the requirements

described in the specification for a given type of implementation (high-speed vs.
lightweight).

B.2 Interface

Please list all deviations from the interface described in Section 2 of the CAESAR API
specification.

For example:
• any differences in the names, widths, and/or meanings of ports
• different width of pdi_data and do_data, etc.

B.3 Protocol

Please list all deviations from the protocol described in Section 3 of the CAESAR API
specification.

For example:
• no support for multiple consecutive segments of the type: AD, Plaintext, and

Ciphertext (or Ciphertext||Tag if appropriate)
• special use for Reserved fields of an Instruction/Status or a Segment Header
• extra words added beyond the minimum number of words necessary to input AD,

message, ciphertext, etc. of a given length (e.g., to always enter data in full block
chunks)

 4

• extra zeros added in the input words other than the last words of a given type (e.g.,
to handle the case when the data port width, w, is not a divisor of the data block
size).

B.4 Timing characteristics

Please list all deviations from the timing characteristics described in Section 4 of the
CAESAR API specification.

For example:
• a different order of bytes within a word of data bus.

F. Disagreement with the Appendix to the CAESAR Hardware API v1.0

Please declare any disagreement with the Appendix to the CAESAR Hardware API.

For example:
• the use of a Length segment as a required input to an "online" algorithm, such as

AES-GCM, in which all lengths can be calculated as the AD/plaintext/ciphertext
arrives and is processed

• a different format of the Length segment in an “offline” algorithm, such as AES-
CCM, understood as an algorithm that require the availability of the lengths of the
AD and plaintext (ciphertext) in advance, before the authenticated encryption
(decryption) starts.

• no use of an external FIFO in the implementation of a two-pass algorithm
• no support for the generic G_MAX_LEN in the implementation of a single-pass

algorithm. This generic should allow the choice between two maximum lengths of
AD/plaintext/ciphertext:

o Maximum length for single-pass algorithms: 232-1
o Maximum length for two-pass algorithms: 211-1.

2. Variants

File: docs/variants.pdf or docs/variants.txt
 (depending on the file format used)

We define variants of the design as different versions of the design that
A. share the same synthesizable source code
B. share the same testbench
C. differ only with values of generics or constants.

Different variants may correspond to
• different algorithms of the same family
• different sizes of keys, nonces, tags, etc.
• different parameters of the interface, such as w and sw
• variants with and without a secret message number, Nsec
• different hardware architectures (e.g., basic iterative, unrolled, folded, pipelined,

etc.)

 5

Please describe in this file all variants recommended for hardware benchmarking in the
order of your preference (primary recommendations first).

For each variant, provide at least the following information:
a. unique identifier, e.g., v1, v2
b. name of the variant (optional)
c. name of the corresponding reference software implementation (optional)
d. all non-default values of generics and constants
e. formulas for the

• key setup time (in clock cycles)
• execution time of authenticated encryption (in clock cycles), as a function of

the number of associated data blocks, Na, and the number of message blocks,
Nm (excluding any key setup cycles)

• execution time of authenticated decryption (in clock cycles) as a function of
the number of associated data blocks, Na, and the number of ciphertext blocks,
Nc (excluding any key setup cycles)

 All formulas should be confirmed using functional simulation.

Please do your best to limit the number of variants recommended for hardware
benchmarking (e.g., by including only primary variants of the CAESAR algorithms
declared in the algorithm specification, and/or by performing initial design space
exploration using FPGA tools).

3. Synthesizable source code

Folder: src_rtl

Please place in this folder all synthesizable source files, including any files being a part of
the Development Package for the CAESAR Hardware API (such as AEAD.vhd.
AEAD_Arch.vhd, PreProcessor.vhd, PostProcessor.vhd, etc.).

Please make sure to set the default values of generics in the top-level file (such as
AEAD.vhd) and the default values of constants in the corresponding package (such as
AEAD_pkg.vhd) to values specific to the primary variant of your algorithm.

Please also place in the same folder the file source_list.txt, containing the list of all
design files in the bottom-up order, i.e., packages and low-level units first, and the top-
level unit last.

4. Testbench

Folder: src_tb

Please place in this folder only your testbench and any non-synthesizable source files
used by your testbench.

In case you use the universal testbench provided as a part of the Development Package,
these files should include only AEAD_TB.vhd and std_logic_1164_additions.vhd.

 6

Please also place in the same folder the file source_list.txt, containing the list of all
testbench files in the bottom-up order, i.e., packages and low-level units first, and the top-
level unit last.

5. Simulation scripts (optional)

Folder: scripts

Place in this folder all simulation scripts, such as modelsim.tcl.

6. Known-answer tests

Folder: KAT

Create subfolders, named v1, v2, v3, etc., corresponding to unique identifiers of variants,
defined using recommendations described in Section 2 Variants.

In each respective subfolder, place test vector files you have used to verify your
implementation of a particular variant.

It is recommended that all test vectors are described using two formats:

A. format accepted by the universal testbench AEAD_TB.vhd (including the
pdi.txt, sdi.txt, and do.txt files), generated by default by the aeadtvgen
program, and

B. a simplified format, listing each input and expected output component (e.g., key,
npub, ad, pt, ct, tag) using a sequence of hexadecimal digits located in the same
line, e.g.
key = 55565758595A5B5C5D5E5F6061626364
npub = B0B1B2B3B4B5B6B7B8B9BABBBCBDBEBF
ad =
pt = FF
ct = 76
tag = FDB8FCCD8A5C78DC9445457B341F13B2
All test vectors should be placed in the same file test_vectors.txt, separated
by at least one empty line. This file can be automatically generated by the
aeadtvgen app by using the option --human_readable.

Please include in the aforementioned files pdi.txt, sdi.txt, do.txt, and
test_vectors.txt only test vectors that successfully passed verification.
Place all test vectors that did not pass verification in separate files:
pdi_failed.txt, sdi_failed.txt, do_failed.txt, and
test_vectors_failed.txt.

7. Block diagrams (optional)

Folder: bd

If possible, please include a simplified block diagram of the datapath for the primary
variant of your algorithm. For consistency, and future use in publications, please consider

 7

using Rules for Reduced Complexity Block Diagrams, developed by William Diehl from
GMU, and made available at
https://cryptography.gmu.edu/athena/CAESAR_HW_API/Reduced_Complexity_Block_Diagrams.pdf

8. License (optional)

File: LICENSE.txt

Include in this file any licensing and copyright information that applies to your code.

9. Preliminary results (optional)

Folders: results/fpga or results/asic (depending on technology)

The GMU Team is planning to perform hardware benchmarking of all Round 2
candidates for FPGA technology only, using approach described in the Implementer's
Guide to the CAESAR Hardware API, Section 8, Generation and Publication of Results.

In order to allow the comparison of designs in terms of Resource Utilization, the GMU
implementation runs will enforce the use of no DSP units and no embedded block
memories.

Each team is encouraged to produce and include in their submission the preliminary
results of their own benchmarking runs, conducted using a similar approach (possibly
without ATHENa and Vivado optimization runs).

These results will be used for sanity check. In case better results are obtained as a result
of GMU benchmarking, only these results will be reported. In case worse results are
obtained as a result of GMU benchmarking, the authors of the implementations may be
contacted with the requests for providing the applied options of tools.

The FPGA results should be reported for the specific FPGA devices, from two major
vendors, Xilinx and Altera, listed below.

High-speed implementations:

Vendor Family Device Code
Xilinx Virtex-6 xc6vlx240tff1156-3 (xc6vlx240t-3ff1156)

Virtex-7 xc7vx485tffg1761-3 (xc7vx485t-3ffg1761)
Altera Stratix IV ep4se530h35c2

Stratix V 5sgxea7k2f40c1

Lightweight implementations:

Vendor Family Device Code
Xilinx Spartan-6 xc6slx16csg324-3 (xc6slx16-3csg324)

Artix-7 xc7a100tcsg324-3 (xc7a100t-3csg324)
Altera Cyclone IV E ep4ce22f17c6

Cyclone V E 5ceba4f23c7

 8

These devices have been selected based on their use in popular prototyping boards from
Xillinx, Altera, Digilent, and Terasic. In each case, the speed grade has been increased to
the maximum possible value, in order to make the results optimal and representative for
the entire FPGA family.

For each FPGA device please report at least the maximum clock frequency and the
resource utilization, including the numbers of

• LUTs, FFs, Slices, BRAMs (should be 0), and DSP slices (should be 0) for Xilinx
FPGAs, and

• LEs or ALUTs, FFs, ALMs, embedded memory in Kb (should be 0), and 18x18
multipliers (should be 0) for Altera FPGAs.

All results should be placed in a single file in the Excel, PDF, or ASCII format.

For your reference, we list below major resources available in each of these devices:

Xilinx FPGAs:

Family Virtex-6 Virtex-7 Spartan-6 Artix-7
Device xc6vlx240tff1156 xc7vx485tffg1761 xc6slx16csg324 xc7a100tcsg324
LUTs 150,720 303,600 9,112 63,400
Slices 37,680 75,900 2,278 15,850
18Kb
BRAMs

832 2,060 32 270

DSP 48E1
Slices

768 2800 32 240

User I/Os 720 700 232 300

Altera FPGAs:

Family Stratix IV Stratix V Cyclone IV E Cyclone V E
Device ep4se530h35c2 5sgxea7k2f40c1 ep4ce22f17c6 5ceba4f23c7
LEs 531K 622K 22K 49K
ALMs 212,480 234,720 N/A 18,480
Memory 1,280 M9K

64 M144K
2,560 M20K 594 Kb 308 M10K

485 MLAB
18 x 18
MULs

1,024 512 66 132

User I/Os 744 696 153 224

Other teams are encouraged to perform independent benchmarking for

• The same set of FPGA devices
• A different, independently selected set of FPGA devices
• ASIC technology with various standard-cell libraries.

 9

Submission

Any other materials related to the submitted implementation, e.g., related papers or
technical reports, should be placed in the docs folder.

The top-level folder should be compressed to a single file

<Authenticated_Cipher_Name>_<Implementation_Team_Name>.zip

e.g., ASCON_GMU.zip.

Either the file itself or its location should be then submitted to the CAESAR’s mailing list.

