Skip to main content
Log in

Bipyrimidine ruthenium(II) arene complexes: structure, reactivity and cytotoxicity

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The synthesis and characterization of complexes [(η6-arene)Ru(N,N′)X][PF6], where arene is para-cymene (p-cym), biphenyl (bip), ethyl benzoate (etb), hexamethylbenzene (hmb), indane (ind) or 1,2,3,4-tetrahydronaphthalene (thn), N,N′ is 2,2′-bipyrimidine (bpm) and X is Cl, Br or I, are reported, including the X-ray crystal structures of [(η6-p-cym)Ru(bpm)I][PF6], [(η6-bip)Ru(bpm)Cl][PF6], [(η6-bip)Ru(bpm)I][PF6] and [(η6-etb)Ru(bpm)Cl][PF6]. Complexes in which N,N′ is 1,10-phenanthroline (phen), 1,10-phenanthroline-5,6-dione or 4,7-diphenyl-1,10-phenanthroline (bathophen) were studied for comparison. The RuII arene complexes undergo ligand-exchange reactions in aqueous solution at 310 K; their half-lives for hydrolysis range from 14 to 715 min. Density functional theory calculations on [(η6-p-cym)Ru(bpm)Cl][PF6], [(η6-p-cym)Ru(bpm)Br][PF6], [(η6-p-cym)Ru(bpm)I][PF6], [(η6-bip)Ru(bpm)Cl][PF6], [(η6-bip)Ru(bpm)Br][PF6] and [(η6-bip)Ru(bpm)I][PF6] suggest that aquation occurs via an associative pathway and that the reaction is thermodynamically favourable when the leaving ligand is I > Br ≈ Cl. pK a* values for the aqua adducts of the complexes range from 6.9 to 7.32. A binding preference for 9-ethylguanine (9-EtG) compared with 9-ethyladenine (9-EtA) was observed for [(η6-p-cym)Ru(bpm)Cl][PF6], [(η6-hmb)Ru(bpm)Cl]+, [(η6-ind)Ru(bpm)Cl]+, [(η6-thn)Ru(bpm)Cl]+, [(η6-p-cym)Ru(phen)Cl]+ and [(η6-p-cym)Ru(bathophen)Cl]+ in aqueous solution at 310 K. The X-ray crystal structure of the guanine complex [(η6-p-cym)Ru(bpm)(9-EtG-N7)][PF6]2 shows multiple hydrogen bonding. Density functional theory calculations show that the 9-EtG adducts of all complexes are thermodynamically preferred compared with those of 9-EtA. However, the bmp complexes are inactive towards A2780 human ovarian cancer cells. Calf thymus DNA interactions for [(η6-p-cym)Ru(bpm)Cl][PF6] and [(η6-p-cym)Ru(phen)Cl][PF6] consist of weak coordinative, intercalative and monofunctional coordination. Binding to biomolecules such as glutathione may play a role in deactivating the bpm complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Jung Y, Lippard SJ (2007) Chem Rev 107:1387–1407

    Article  PubMed  CAS  Google Scholar 

  2. van Zutphen S, Reedijk J (2005) Coord Chem Rev 249:2845–2853

    Article  Google Scholar 

  3. Pizarro AM, Habtemariam A, Sadler PJ (2010) Top Organomet Chem 32:21–56

    Article  CAS  Google Scholar 

  4. Aird RE, Cummings J, Ritchie AA, Muir M, Morris RE, Chen H, Sadler PJ, Jodrell DI (2001) Br J Cancer 86:1652–1657

    Article  Google Scholar 

  5. Yan YK, Melchart M, Habtemariam A, Sadler PJ (2005) Chem Commun 4764–4776

  6. Fernández R, Melchart M, Habtemariam A, Parsons S, Sadler PJ (2004) Chem Eur J 10:5173–5179

    Article  PubMed  Google Scholar 

  7. Wang F, Habtemariam A, van der Geer EPL, Fernández R, Melchart M, Deeth RJ, Aird R, Guichard S, Fabbiani FPA, Lozano-Casal P, Oswald IDH, Jodrell DI, Parsons S, Sadler PJ (2005) Proc Natl Acad Sci USA 102:18269–18274

    Article  PubMed  CAS  Google Scholar 

  8. Bloemink MJ, Engelking H, Karentzopoulos S, Krebs B, Reedijk J (1996) Inorg Chem 35:619–627

    Article  CAS  Google Scholar 

  9. Nováková O, Kasparkova J, Vrana O, van Vliet PM, Reedijk J, Brabec V (1995) Biochemistry 34:12369–12378

    Article  PubMed  Google Scholar 

  10. Velders AH, Kooijman H, Spek AL, Haasnoot JG, De Vos D, Reedijk J (2000) Inorg Chem 39:2966–2967

    Article  PubMed  CAS  Google Scholar 

  11. Ishikawa T, Ali-Osman F (1993) J Biol Chem 268:20116–20125

    PubMed  CAS  Google Scholar 

  12. Chen Y, Guo Z, Parkinson JA, Sadler PJ (1998) J Chem Soc Dalton Trans 3577–3585

  13. Teuben J-M, Reedijk J (2000) J Biol Inorg Chem 5:463–468

    PubMed  CAS  Google Scholar 

  14. Corazza A, Harvey I, Sadler PJ (1996) Eur J Biochem 236:697–705

    Article  PubMed  CAS  Google Scholar 

  15. Buttke TM, Sandstrom PA (1994) Immunol Today 15:7–10

    Article  PubMed  CAS  Google Scholar 

  16. Clarke MJ (2002) Coord Chem Rev 232:69–93

    Article  CAS  Google Scholar 

  17. Bennet MA, Smith AK (1974) J Chem Soc Dalton Trans 233–241

  18. Govindaswamy P, Canivet J, Therrien B, Süss-Fink G, Štĕpnička P, Ludvík J (2007) J Organomet Chem 692:3664–3675

    Article  CAS  Google Scholar 

  19. Zelonka RA, Baird MC (1972) J Organomet Chem 35:C43–C46

    Article  CAS  Google Scholar 

  20. Melchart M, Habtemariam A, Nováková O, Moggach SA, Fabbiani FPA, Parsons S, Brabec V, Sadler PJ (2007) Inorg Chem 46:8950–8962

    Article  PubMed  CAS  Google Scholar 

  21. Habtemariam A, Betanzos-Lara S, Sadler PJ (2010) Inorg Synth 35:160–163

    CAS  Google Scholar 

  22. Brabec V, Palecek E (1970) Biophysik 6:290–300

    Article  PubMed  CAS  Google Scholar 

  23. Brabec V, Palecek E (1976) Biophys Chem 4:79–92

    Article  PubMed  CAS  Google Scholar 

  24. Sheldrick GM (1997) SHELXL97. University of Göttingen, Germany

    Google Scholar 

  25. Sheldrick GM (1990) Acta Crystallogr A 46:467–473

    Article  Google Scholar 

  26. Sheldrick GM (2008) Acta Crystallogr 64:12–122

    Google Scholar 

  27. Krezel A, Bal W (2004) J Inorg Biochem 98:161–166

    Article  PubMed  CAS  Google Scholar 

  28. Te Velde G, Bickelhaupt FM, Baerends EJ, Fonseca Guerra C, Van Gisbergen SJA, Snijders JG, Ziegler T (2001) J Comput Chem 22:931–967

    Article  Google Scholar 

  29. Baerends EJ, Berces A, Bo C, Boerrigter PM, Cavallo L, Deng L, Dickson RM, Ellis DE, Fan L, Fischer TH et al (2000) ADF 2009. Free University, Amsterdam

    Google Scholar 

  30. Wert C, Zener C (1949) Phys Rev 76:1169–1175

    Article  CAS  Google Scholar 

  31. Vineyard GH (1957) J Phys Chem Solids 3:121–127

    Article  CAS  Google Scholar 

  32. Brabec V, Leng M (1993) Proc Natl Acad Sci USA 90:5345–5349

    Article  PubMed  CAS  Google Scholar 

  33. Lemaire MA, Schwartz A, Rahmouni AR, Leng M (1991) Proc Natl Acad Sci USA 88:1982–1985

    Article  PubMed  CAS  Google Scholar 

  34. Keck MV, Lippard SJ (1992) J Am Chem Soc 114:3386–3390

    Article  CAS  Google Scholar 

  35. Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D, Warren JT, Bokesch H, Kenney S, Boyd MR (1990) J Nat Cancer Inst 82:1107–1112

    Article  PubMed  CAS  Google Scholar 

  36. Morris RE, Aird RE, del Socorro Murdoch P, Chen H, Cummings J, Hughes ND, Parsons S, Parkin A, Boyd G, Jodrell DI, Sadler PJ (2001) J Med Chem 44:3616–3621

    Article  PubMed  CAS  Google Scholar 

  37. Chen H, Parkinson JA, Parsons S, Coxall RA, Gould RO, Sadler PJ (2002) J Am Chem Soc 124:3064–3082

    Article  PubMed  CAS  Google Scholar 

  38. Süss-Fink G (2010) Dalton Trans 39:1673–1688

    Article  PubMed  Google Scholar 

  39. Singh A, Chandra M, Sahay AN, Pandey DS, Pandey KK, Mobin SM, Puerta MC, Valerga P (2004) J Organomet Chem 689:1821–1834

    Article  CAS  Google Scholar 

  40. Flower KR, Pritchard RG (2001) J Organomet Chem 620:60–68

    Article  CAS  Google Scholar 

  41. Gül N, Nelson JH (1999) Organometallics 18:709–725

    Article  Google Scholar 

  42. Gül N, Nelson JH (1999) Polyhedron 18:1835–1843

    Article  Google Scholar 

  43. Bugarcic T, Habtemariam A, Stepankova J, Heringova P, Kašpárková J, Deeth RJ, Johnstone RDL, Prescimone A, Parkin A, Parsons S, Brabec V, Sadler PJ (2008) Inorg Chem 47:11470–11486

    Article  PubMed  CAS  Google Scholar 

  44. van Rijt SH, Hebden AJ, Amaresekera T, Deeth RJ, Clarkson GJ, Parsons S, McGowan P, Sadler PJ (2009) J Med Chem 52:7753–7764

    Article  PubMed  Google Scholar 

  45. Bugarcic T, Nováková O, Halámiková A, Zerzánková L, Vrána O, Kašpárková J, Habtemariam A, Parsons S, Sadler PJ, Brabec V (2008) J Med Chem 51:5310–5319

    Article  PubMed  CAS  Google Scholar 

  46. Brandl M, Weiss MS, Jabs A, Suhnel J, Hilgenfeld R (2001) J Mol Biol 307:357–377

    Article  PubMed  CAS  Google Scholar 

  47. Bogdanovic GA, Spasojevic-de Bire A, Zaric SD (2002) Eur J Inorg Chem 1599–1602

  48. Dieter-Wurm I, Sabat M, Lippert B (1992) J Am Chem Soc 114:357–359

    Article  CAS  Google Scholar 

  49. Witkowshi H, Freisinger E, Lippert B (1997) J Chem Soc Chem Commun 1315–1316

  50. Sigel RKO, Freisinger E, Metzger S, Lippert B (1998) J Am Chem Soc 120:12000–12007

    Article  CAS  Google Scholar 

  51. Qu X, Chaires JB (2001) J Am Chem Soc 123:1–7

    Article  PubMed  CAS  Google Scholar 

  52. Betanzos-Lara S, Salassa L, Habtemariam A, Sadler PJ (2009) Chem Commun 6622–6624

  53. Wang F, Chen H, Parsons S, Oswald IDH, Davidson JE, Sadler PJ (2003) Chem Eur J 9:5810–5820

    Article  PubMed  CAS  Google Scholar 

  54. Kunkely H, Vogler A (2003) Inorg Chim Acta 343:357–360

    Article  CAS  Google Scholar 

  55. Dadci L, Elias H, Frey U, Hornig A, Koelle U, Merbach AE, Paulus H, Schneider JS (1995) Inorg Chem 34:306–315

    Article  CAS  Google Scholar 

  56. Koefod RS, Mann KR (1990) J Am Chem Soc 112:7287–7293

    Article  CAS  Google Scholar 

  57. Dougan SJ, Melchart M, Habtemariam A, Parsons S, Sadler PJ (2007) Inorg Chem 46:10882–10894

    Article  Google Scholar 

  58. Rapaport I, Helm L, Merbach AE, Bernhard P, Ludi A (1988) Inorg Chem 27:873–879

    Article  CAS  Google Scholar 

  59. Broomhead JA, Basolo F, Pearson RG (1964) Inorg Chem 3:826–832

    Article  CAS  Google Scholar 

  60. Takeuchi KJ, Thompson MS, Pipes DW, Meyer TJ (1984) Inorg Chem 23:1845–1851

    Article  CAS  Google Scholar 

  61. Basolo F, Pearson RG (1967) Mechanisms of inorganic reactions: a study of metal complexes in solution, 2nd edn. Wiley, New York, p 124

  62. Broomhead JA, Kane-Maguire LAP (1968) Inorg Chem 7:2519–2523

    Article  CAS  Google Scholar 

  63. Scheller KH, Scheller-Krattiger V, Martin RB (1981) J Am Chem Soc 103:6833–6839

    Article  CAS  Google Scholar 

  64. Peacock AFA, Habtemariam A, Fernández R, Walland V, Fabbiani Francesca PA, Parsons S, Aird RE, Duncan IJ, Sadler PJ (2006) J Am Chem Soc 128:1739–1748

    Article  PubMed  CAS  Google Scholar 

  65. Baik M-H, Friesner RA, Lippard SJ (2003) J Am Chem Soc 125:14082–14092

    Article  PubMed  CAS  Google Scholar 

  66. Summa N, Schiessl W, Puchta R, van Eikema Hommes N, van Eldik R (2006) Inorg Chem 45:2948–2959

    Article  PubMed  CAS  Google Scholar 

  67. Bancroft DP, Lepre CA, Lippard SJ (1990) J Am Chem Soc 112:6860–6871

    Article  CAS  Google Scholar 

  68. Aird R, Cummings J, Ritchie A, Muir M, Morris R, Chen H, Sadler PJ, Jodrell D (2002) Br J Cancer 86:1652–1657

    Article  PubMed  CAS  Google Scholar 

  69. Nováková O, Kasparkova J, Bursova V, Hofr C, Vojtiskova M, Chen H, Sadler PJ, Brabec V (2005) Chem Biol 12:121–129

    Article  PubMed  Google Scholar 

  70. Ivanov VI, Minchenkova LE, Minyat EE, Frank-Kamenetskii MD, Schyolkina AK (1974) J Mol Biol 87:817–833

    Article  PubMed  CAS  Google Scholar 

  71. Vorlickova M (1995) Biophys J 69:2033–2043

    Article  PubMed  CAS  Google Scholar 

  72. Richards AD, Rodger A (2007) Chem Soc Rev 36:471–483

    Article  PubMed  CAS  Google Scholar 

  73. Coggan DZM, Haworth IS, Bates PJ, Robinson A, Rodger A (1999) Inorg Chem 38:4486–4497

    Article  PubMed  CAS  Google Scholar 

  74. Nováková O, Chen H, Vrana O, Rodger A, Sadler PJ, Brabec V (2003) Biochemistry 42:11544–11554

    Article  PubMed  Google Scholar 

  75. Lincoln P, Broo A, Norden B (1996) J Am Chem Soc 118:2644–2653

    Article  CAS  Google Scholar 

  76. Habtemariam A, Melchart M, Fernández R, Parsons S, Oswald IDH, Parkin A, Fabbiani FPA, Davidson JE, Dawson A, Aird RE, Jodrell DI, Sadler PJ (2006) J Med Chem 49:6858–6868

    Article  PubMed  CAS  Google Scholar 

  77. Liu HK, Berners-Price SJ, Wang FY, Parkinson JA, Xu JJ, Bella J, Sadler PJ (2006) Angew Chem Int Ed 45:8153–8156

    Article  CAS  Google Scholar 

  78. Wang D, Lippard JS (2005) Nat Rev Drug Discovery 4:307–320

    Google Scholar 

  79. Reedijk J (2003) Proc Natl Acad Sci USA 100:3611–3616

    Google Scholar 

Download references

Acknowledgments

S.B.-L. thanks WPRS/ORSAS (UK) and CONACyT (Mexico) for funding a research studentship. B.L., O.N. and V.B. were supported by the Czech Science Foundation (grants P301/10/0598 and 301/09/H004). We also thank EDRF and AWM (Science City) and ERC (grant no. 247450) for funding, and Ivan Prokes and Lijiang Song and Philip Aston of the University of Warwick for their help with NMR and HR-MS instruments, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abraha Habtemariam.

Electronic supplementary material

Details of the preparation and characterization of all the complexes in this work. Crystallographic data for 3, 4, 6, 7 and 14; mass-to-charge ratios obtained from HR-MS spectra for the products of hydrolysis of RuII arene complexes 114; mass-to-charge ratios obtained from HR-MS spectra for the products of interactions of RuII arene complexes 1, 811 and 13 with 9-EtG; changes in CD and LD spectra of CT–DNA modified by RuII arene complexes 1 and 11; X-ray crystal structure of 4 showing a π-π stacking interaction; CH-π interaction in the crystal structure of 7; biswater-bridged interaction in the X-ray crystal structure of 14; 1H-1H NOESY NMR spectrum of 14 in D2O (aromatic region only); time evolution of the hydrolysis reactions of complexes 113; dependence of the absorbance during aquation of 1 at 310 K; 1H NMR spectra recorded during a pH* titration of a solution of the aqua adduct of complex 1; DFT-optimized geometry in the transition state during the hydrolysis reaction of the RuII arene cation 1; 1H NMR spectra of the reaction of 10 with 9-EtG in D2O at 310 K after 510 min; optimized geometries for the guanine and adenine adducts; kinetics of the binding of complexes 1 and 11 to CT–DNA; hydrolysis reaction of complex 1 in the presence of 100-fold excess of GSH followed by UV–vis spectroscopy.

X-ray crystallographic data for complexes 3, 6, 14, 4 and 7 are available as supporting information and have been deposited in the Cambridge Crystallographic Data Centre (CCDC) under accession numbers CCDC 872981, 872982, 872983, 872984 and 872985, respectively. Copies of the data can be obtained free of charge from the CCDC (12 Union Road, Cambridge CB2 1EZ, UK; Tel.: +44-1223-336408; Fax: +44-1223-336003; e-mail: deposit@ccdc.cam.ac.uk; website http://www.ccdc.cam.ac.uk/).

Supplementary material (PDF 2577 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Betanzos-Lara, S., Novakova, O., Deeth, R.J. et al. Bipyrimidine ruthenium(II) arene complexes: structure, reactivity and cytotoxicity. J Biol Inorg Chem 17, 1033–1051 (2012). https://doi.org/10.1007/s00775-012-0917-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-012-0917-9

Keywords

Navigation