Skip to main content

Textons

  • Chapter
  • First Online:
Computer Vision
  • 485 Accesses

Abstract

Textons refer to fundamental micro-structures in natural images and are considered the atoms of pre-attentive human visual perception. Unfortunately, the term “texton” remains a vague concept in the literature for lacking a good mathematical model. In this chapter, we present various generative image models for textons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The number of basis functions in Δ is often 100 times larger than the number of pixels in an image.

  2. 2.

    Note that the filter responses are convolutions of a filter with image in a deterministic way and are different from the coefficients of the basis functions.

References

  1. Aharon, M., Elad, M., Bruckstein, A. M. (2006). The K-SVD: An algorithm for designing of overcomplete dictionaries for sparse representations. IEEE Transactions On Signal Processing, 15(12), 3736–3745.

    MATH  Google Scholar 

  2. Barlow, H. B. (1961). Possible principles underlying the transformation of sensory messages. Sensory communication, 1(01).

    Google Scholar 

  3. Bell, A. J., & Sejnowski, T. J. (1997). The independent components of natural scenes are edge filters. Vision Research, 37(23), 3327–3338.

    Article  Google Scholar 

  4. Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems. Journal of the Royal Statistical Society: Series B (Methodological), 36(2), 192–225.

    MathSciNet  MATH  Google Scholar 

  5. Bristow, H., Eriksson, A., & Lucey, S. (2013). Fast convolutional sparse coding. In IEEE Conference on Computer Vision and Pattern Recognition (pp. 391–398). IEEE.

    Google Scholar 

  6. Chen, S. S., Donoho, D. L., & Saunders, M. A. (1998). Atomic decomposition by basis pursuit. SIAM Journal on Scientific Computing, 20(1), 33–61.

    Article  MathSciNet  MATH  Google Scholar 

  7. Della Pietra, S., Della Pietra, V., & Lafferty, J. (1997). Inducing features of random fields. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(4), 380–393.

    Article  Google Scholar 

  8. Donoho, D. L. (2001). Sparse components of images and optimal atomic decompositions. Constructive Approximation, 17(3), 353–382.

    Article  MathSciNet  MATH  Google Scholar 

  9. Elad, M. (2010). Sparse and redundant representations: From theory to applications in signal and image processing. Springer.

    Book  MATH  Google Scholar 

  10. Fraley, C., & Raftery, A. E. (2002). Model-based clustering, discriminant analysis, and density estimation. Journal of the American statistical Association, 97(458), 611–631.

    Article  MathSciNet  MATH  Google Scholar 

  11. Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1), 119–139.

    Article  MathSciNet  MATH  Google Scholar 

  12. Friedman, J., Hastie, T., Tibshirani, R., et al. (2000). Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The Annals of Statistics, 28(2), 337–407.

    Article  MathSciNet  MATH  Google Scholar 

  13. Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. Annals of Statistics, 29(5), 1189–1232.

    Article  MathSciNet  MATH  Google Scholar 

  14. Geman, S., & Geman, D. (1997). Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6(4), 380–393.

    MATH  Google Scholar 

  15. Geman, S., & Graffigne, C. (1986). Markov random field image models and their applications to computer vision. In Proceedings of the International Congress of Mathematicians (Vol. 1, p. 2).

    Google Scholar 

  16. Geman, S., Potter, D. F., & Chi, Z. (2002). Composition systems. Quarterly of Applied Mathematics, 60(4), 707–736.

    Article  MathSciNet  MATH  Google Scholar 

  17. Guo, C.-E., Zhu, S.-C., & Wu, Y. N. (2003a). Modeling visual patterns by integrating descriptive and generative methods. International Journal of Computer Vision, 53(1), 5–29.

    Article  MATH  Google Scholar 

  18. Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: data mining, inference and prediction. Springer.

    Book  MATH  Google Scholar 

  19. Hong, Y., Si, Z., Hu, W., Zhu, S.-C., & Wu, Y. N. (2013). Unsupervised learning of compositional sparse code for natural image representation. Quarterly of Applied Mathematics, 72, 373–406.

    Article  MathSciNet  MATH  Google Scholar 

  20. Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. The Journal of Physiology, 160(1), 106.

    Article  Google Scholar 

  21. Julesz, B. et al. (1981). Textons, the elements of texture perception, and their interactions. Nature, 290(5802), 91–97.

    Article  Google Scholar 

  22. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324.

    Article  Google Scholar 

  23. Mallat, S. G., & Zhang, Z. (1993b). Matching pursuits with time-frequency dictionaries. IEEE Transactions on Signal Processing, 41(12), 3397–3415.

    Article  MATH  Google Scholar 

  24. Neal, R. M. et al. (2011). MCMC using hamiltonian dynamics. Handbook of Markov Chain Monte Carlo, 2(11), 2.

    MATH  Google Scholar 

  25. Olshausen, B. A., & Field, D. J. (1996a). Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381, 607–609.

    Article  Google Scholar 

  26. Olshausen, B. A., & Field, D. J. (1997). Sparse coding with an overcomplete basis set: A strategy employed by V1? Vision Research, 37(23), 3311–3325.

    Article  Google Scholar 

  27. Robbins, H., & Monro, S. (1951). A stochastic approximation method. The Annals of Mathematical Statistics, pp. 400–407.

    Google Scholar 

  28. Rosset, S., Zhu, J., & Hastie, T. (2004). Boosting as a regularized path to a maximum margin classifier. The Journal of Machine Learning Research, 5, 941–973.

    MathSciNet  MATH  Google Scholar 

  29. Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society: Series B (Methodological), 58(1), 267–288.

    MathSciNet  MATH  Google Scholar 

  30. Wang, Y., & Zhu, S.-C. (2004). Analysis and synthesis of textured motion: Particles and waves. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(10), 1348–1363.

    Article  Google Scholar 

  31. Welling, M., Zemel, R. S., & Hinton, G. E. (2002). Self supervised boosting. In Advances in Neural Information Processing Systems (pp. 665–672).

    Google Scholar 

  32. Wu, Y. N., Si, Z., Gong, H., & Zhu, S.-C. (2010). Learning active basis model for object detection and recognitio. International Journal of Computer Vision, 90, 198–235.

    Article  MathSciNet  Google Scholar 

  33. Wu, Y. N., Xie, J., Lu, Y., & Zhu, S.-C. (2018). Sparse and deep generalizations of the frame model. Annals of Mathematical Sciences and Applications, 3(1), 211–254.

    Article  MathSciNet  MATH  Google Scholar 

  34. Wu, Y. N., Zhu, S.-C., & Guo, C.-E. (2008). From information scaling of natural images to regimes of statistical models. Quarterly of Applied Mathematics, 66, 81–122.

    Article  MathSciNet  MATH  Google Scholar 

  35. Xie, J., Hu, W., Zhu, S.-C., & Wu, Y. N. (2014). Learning sparse frame models for natural image patterns. International Journal of Computer Vision, 114, 1–22.

    MathSciNet  Google Scholar 

  36. Xie, J., Lu, Y., Zhu, S.-C., & Wu, Y. N. (2016a). Inducing wavelets into random fields via generative boosting. Journal of Applied and Computational Harmonic Analysis, 41, 4–25.

    Article  MathSciNet  MATH  Google Scholar 

  37. Younes, L. (1999). On the convergence of markovian stochastic algorithms with rapidly decreasing ergodicity rates. Stochastics: An International Journal of Probability and Stochastic Processes, 65(3-4), 177–228.

    MathSciNet  MATH  Google Scholar 

  38. Zhu, S.-C., Guo, C.-E., Wang, Y., & Xu, Z. (2005). What are textons? International Journal of Computer Vision, 62(1–2), 121–143.

    Article  Google Scholar 

  39. Zhu, S.-C., Mumford, D., et al. (2007). A stochastic grammar of images. Foundations and TrendsˆⓇ in Computer Graphics and Vision, 2(4), 259–362.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhu, SC., Wu, Y.N. (2023). Textons. In: Computer Vision. Springer, Cham. https://doi.org/10.1007/978-3-030-96530-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-96530-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-96529-7

  • Online ISBN: 978-3-030-96530-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics