

宇宙の階層構造						
太陽系 → 銀河系 → 銀河群・団 → 超銀河団						
というように、宇宙は、いくつかの構造が小さなもの						
から大きなものまで順々に階層をなしている。この						
ような構造を「宇宙の階層構造」と呼ぶ。						
表 7.1 階層構造の典型的な規模						
	階層構造	銀河数	スケール	質量	速度分散	
	孤立銀河	1	$50{\rm kpc}$	$10^{11}M_{\odot}$	-	
	連銀河	2	$200\mathrm{kpc}$	$10^{11}M_\odot$	$50{\rm kms^{-1}}$	
	銀河群	10	$500\mathrm{kpc}$	$10^{12} M_{\odot}$	$100{\rm kms^{-1}}$	
	銀河団	500	$5{ m Mpc}$	$10^{14} M_{\odot}$	$1000{\rm kms^{-1}}$	
	超銀河団	1000	$50{ m Mpc}$	$10^{15}M_\odot$	-	

1.2 銀河の基本的性質

1.2.1 銀河のハッブル系列 1.2.2 銀河のスケーリング則 1.2.3 銀河の光度関数 1.2.4 ダークハローと銀河の集積

Press & Schechter (1974)
M~M+dM の質量範囲のハローに取り込まれている単位体積当たりの質量 n(M)MdM は
質量関数 n(M)
$$n(M)M dM = 2\bar{\rho} \left| \frac{dP_{>\delta_{c}}}{dM} \right| dM$$
 (3.91)
(ここで2倍したのは、密度揺らぎが負になっている領域の分を補正するため)
 $n(M) = \sqrt{\frac{2}{\pi}} \frac{\bar{\rho}}{M^{2}} \left| \frac{d \ln \sigma(M)}{d \ln M} \right| \frac{\delta_{c}}{\sigma(M)} \exp\left(-\frac{\delta_{c}^{2}}{2\sigma^{2}(M)}\right)$ (3.92)
 $n(M) = \frac{2}{\sqrt{\pi}} \frac{\bar{\rho}\alpha}{M_{*}^{2}} \left(\frac{M}{M_{*}}\right)^{\alpha-2} \exp\left[-\left(\frac{M}{M_{*}}\right)^{2\alpha}\right]$ (3.93)
ここで $\sigma(M) \propto M^{-\alpha} P(k) \propto k^{\alpha}$ の時 $\alpha = (n+3)/6$ (-3\sigma(M_{*}/2^{1/(2\alpha)}) = \delta_{c} で定義される質量)
選代の天文学第3巻『宇宙論Ⅱ3.4節参照

$$\begin{array}{l} \textbf{blue} \textbf{blue}$$

Schmidt (1959) law for star formation, and infall rate proportional to gas mass in the halo (reservoir).

$$C(t) = k_* f_g(t)^n \equiv \frac{1}{\tau_*} f_g(t)^n, \quad 1 \le n \le 2,$$
(9)

$$A_{in}(t) = k_{in} f_{g,halo}(t) = \frac{1}{\tau_{in}} f_{g,halo}(t) = \frac{1}{\tau_{in}} \exp(-\frac{t}{\tau_{in}})$$
(10)

$$A_{out}(t) = k_{out} f_g(t) = \frac{1}{\tau_{out}} f_g(t)$$
(11)

(S-1) simple model with the power 1
$$(n = 1, f_g(0) = 1, Z_g(0) = 0, A_{in}(t) = A_{out}(t) = 0)$$

 $C(t) = k_* f_g(t) = \frac{1}{\tau_*} f_g(t)$ n=1 (21)
 $\frac{df_g(t)}{dt} = -C(t) + F(t) = -C(t) \alpha = -\alpha k_* f_g(t) = -\frac{1}{\tau_*'} f_g(t)$ (22)
 $f_g(t) = f_g(0) \exp(-\alpha k_* t) = \exp(-\frac{t}{\tau_*'})$ (23)
 $\overline{\tau_*'} = \frac{\tau_*}{\alpha}$ ガスの割合は指数関数的に減少する。
(24)
 $\frac{d\{Z_g(t)f_g(t)\}}{dt} = -Z_g(t)C(t) + F_Z(t) = -Z_g(t) \alpha C(t) + y \alpha C(t)$ (25)
 $\frac{dZ_g(t)}{dt} = y \alpha k$ (26)
 $\frac{Z_g(t) = y\alpha kt = y \frac{t}{\tau_*'}}{Z_g(t) = -y \ln f_g(t)}$ (27)
 $\overline{Z_g(t)} = -y \ln f_g(t)$ (28)
重元素量は時間に比例して増大する。
 $Z_g(t) = -y \ln f_g(t)$ (28)

(S-2) simple model with the power 2 $(n = 2, f_g(0) = 1, Z_g(0) = 0, A_{in}(t) = A_{out}(t) = 0)$

$$C(t) = k_* f_g(t)^2 = \frac{1}{\tau_*} f_g(t)^2 \qquad \mathbf{n=2}$$
(29)

$$\frac{df_g(t)}{dt} = -\alpha k_* f_g(t)^2 = -\frac{1}{\tau'_*} f_g(t)^2$$
(30)

$$f_g(t) = \frac{f_g(0)}{1 + f_g(0) \ \alpha kt} = \frac{1}{1 + \alpha kt} = \frac{1}{1 + \frac{t}{\tau'_*}}$$
(31)

$$\frac{dZ_g(t)}{dt} = \frac{y \ \alpha k}{1 + \alpha kt} \tag{32}$$

$$Z_g(t) = y \ln (1 + \alpha kt) = y \ln (1 + \frac{t}{\tau'_*})$$
(33)

$$Z_g(t) = -y \ln f_g(t) \tag{34}$$

(I-1) infall model with the power 1 $(n = 1, f_g(0) = 0, Z_g(0) = Z_{in}(t) = 0, A_{out}(t) = 0)$

$$C(t) = k_* f_g(t) = \frac{1}{\tau_*} f_g(t)$$
 n=1 (35)

$$\frac{df_g(t)}{dt} = -C(t) + F(t) + A_{in}(t) = -\frac{1}{\tau_*}f_g(t) + \frac{1}{\tau_{in}}\exp(-\frac{t}{\tau_{in}})$$
(36)

$$f_g(t) = \frac{\beta}{1-\beta} \{ \exp(-\frac{t}{\tau_{in}}) - \exp(-\frac{t}{\tau_*}) \}$$
(37)

$$\beta = \frac{\tau'_*}{\tau_{in}} \tag{38}$$

$$\frac{dZ_g(t)}{dt} = y \ \alpha k - \frac{1-\beta}{\beta} \frac{\frac{1}{\tau_{in}} \exp(-\frac{t}{\tau_{in}})}{\exp(-\frac{t}{\tau_{in}}) - \exp(-\frac{t}{\tau'_*})}$$
(39)

$$Z_g(t) = \frac{y}{1-\beta} \frac{\exp(-\frac{t}{\tau_{in}}) + \{1 + (1-\beta)\frac{t}{\tau'_*}\}\exp(-\frac{t}{\tau'_*})}{\exp(-\frac{t}{\tau_{in}}) - \exp(-\frac{t}{\tau'_*})}$$
(40)

星形成領域の判定条件

- $\nabla \cdot v < 0$ (convergence flow)
- t_cool < t_dyn (cooling efficient)
- t_dyn < t_sound (Jeans unstable)

この上でシュミット則を仮定する。

3. 観測から得る物理量と銀河の選択

テーマ	観測ターゲット	望遠鏡形態	観測モード
初代天体の形成現場	Ly α (cooling), H ₂ ,	$\pi^{-}\pi > 4m$	NB-imaging
	UV, Ly α (H _{II})	地上 > 20m	$2\text{-}50\mu\mathrm{m}$
	at $z = 3 - 20$	a / 200 a	
宇宙の再電離史	Lyα, Hα, UV	スペース 4m	NB-imaging
	at $z = 6 - 20$	地上 > 20m	$1\text{-}10\mu\mathrm{m}$
形成途中銀河の内部構造	Lyα, Hα	地上 > 20m	IFU spectroscopy
星形成の局在、伝搬	at $z = 3 - 7$	スペース 4m	$0.5-5\mu m$
ガスの流出入			
球状星団の形成		-	
銀河基本構造の獲得	Lyα, Hα, ΟΙΙ,	スペース 4m	wide imaging,
形態 (size, bulge/disk)	Balmer lines, NIR	地上 > 20m	spectroscopy
内部運動、質量 (TF/FP)	at $z = 1 - 7$		0.5 - $10\mu m$
星形成 (b=SFR/(SFR))			
化学進化 (SFH, IMF)			
矮小銀河の形成	OII, H α , NIR	スペース 4m	imaging,
	at $z = 1 - 10$	地上 > 20m	spectroscopy
			$1-10\mu m$
宇宙大規模構造の形成	NIR	スペース 4m	wide imaging
と銀河進化	at $z = 1 - 10$		1-10µm
AGN-Galaxy connection	Hα, NIR	スペース 4m	wide imaging
	at $z = 1 - 20$		$1\text{-}20\mu\mathrm{m}$
IGM の進化	abs lines	地上 > 20m	spectroscopy
	at $z = 1 - 7$		0.5-2.6um

