BASIC Classroom Management

While we don’t see it used very often these days, BASIC was fairly revolutionary in bringing computers to the masses. It was one of the first high-level languages to catch on and make computers useful for those who didn’t want to (or have time) to program them in something more complex. But that doesn’t mean it wasn’t capable of getting real work done — this classroom management software built in the language illustrates its capabilities.

Written by [Mike Knox], father of [Ethan Knox] aka [norton120], for his classroom in 1987, the programs were meant to automate away many of the drudgeries of classroom work. It includes tools for generating random seating arrangements, tracking attendance, and other direct management tasks as well as tools for the teacher more directly like curving test grades, tracking grades, and other tedious tasks that normally would have been done by hand at that time. With how prevalent BASIC was at the time, this would have been a powerful tool for any educator with a standard desktop computer and a floppy disk drive.

Since most people likely don’t have an 80s-era x86 machine on hand capable of running this code, [Ethan] has also included a docker container to virtualize the environment for anyone who wants to try out his father’s old code. We’ve often revisited some of our own BASIC programming from back in the day, as our own [Tom Nardi] explored a few years ago.

Reflecting On The State Of Game Boy Emulation In 2024

Considering the decades that have passed since Nintendo’s Game Boy was considered the state-of-the-art in mobile gaming, you’d imagine that the community would have pretty much perfected the emulation of the legendary family of handhelds — and on the whole, you’d be right. Today, you can get open source emulators for your computer or even smartphone that can play the vast majority of games that were released between the introduction of the original DMG-1 “brick” Game Boy in 1989 through to the final games published for the Game Boy Advance in the early 2000s.

But not all of them. While all the big name games are handled at this point, there’s still a number of obscure titles (not all of which are games) that require specialized hardware accessories to properly function. To bring the community up to speed on where work is still required, [Shonumi] recently provided a rundown on the emulation status of every commercial Game Boy accessory.

Continue reading “Reflecting On The State Of Game Boy Emulation In 2024”

Air Hockey Table Embraces DOOM, Retro Gaming

[Chris Downing] recently finished up a major project that spanned some two years and used nearly every skill he possessed. The result? A smart air hockey table with retro-gaming roots. Does it play DOOM? It sure (kind of) does!

Two of the most striking features are the score board (with LCD screen and sound) and the play surface which is densely-populated with RGB LED lighting and capable of some pretty neat tricks. Together, they combine to deliver a few different modes of play, including a DOOM mode.

The first play mode is straight air hockey with automated score tracking and the usual horns and buzzers celebrating goals. The LED array within the table lights up to create the appearance and patterns of a typical hockey rink.

DOOM hockey mode casts one player as Demons and the other as the Doom Slayer, and the LED array comes to life to create a play surface of flickering flames. Screams indicate goals (either Demon screams or Slayer screams, depending on who scores!)

In retrogaming emulation mode, the tabletop mirrors the screen.

Since the whole thing is driven by a Raspberry Pi, the table is given a bit of gaming flexibility with Emulation Mode. This mode allows playing emulated retro games on the scoreboard screen, and as a super neat feature, the screen display is mirrored on the tabletop’s LED array. [Chris] asserts that the effect is imperfect, but to us it looks at least as legible as DOOM on 7-segment displays.

This project is a great example of how complex things can get when one combines so many different types of materials and fabrication methods into a single whole. The blog post has a lot of great photos and details, but check out the video (embedded below) for a demonstration of everything in action. Continue reading “Air Hockey Table Embraces DOOM, Retro Gaming”

Raspberry Pi Does Its Best Retro PC Impression

The Raspberry Pi is a popular choice if you’re looking to put together a simple emulation box — it’s relatively cheap, small enough to tuck into pretty much any entertainment center, and benefits from a large and vibrant development community. You can even get enclosures that will dress the Linux single-board computer up like a miniature version of your favorite retro console. But what about the old school PC gamers who want to relive their glory days in a palm-sized package?

Well, if you’ve got a 3D printer, [fantasticmrdavid] might have just the solution for you. This second iteration of his printable Raspberry Pi enclosure is designed to look like the 286 desktop that he had in his youth, complete with a functional “floppy drive” in the front that takes an SD card. With a 3.5 inch MPI3508 LCD up in the “monitor” and a copy of DOSBox on the SD card, you’re well on your way to booting up a copy of Windows 3.11 or building some contraptions in The Incredible Machine.

While the external aesthetics of the design are impeccable, we appreciate that [fantasticmrdavid] didn’t skimp on the internals. There’s mount points for dual 25 mm fans to keep the more powerful variants of the Raspberry Pi cool, and a speaker expansion board that plugs into the GPIO header to provide era-appropriate bloops and bleeps. The tiny details here really shine, like the fact that the face plates for the dual drives are designed as separate pieces so they can be printed in a different color than the main case.

If you’re not interested in the classics, don’t worry. We’ve seen the Raspberry Pi stand in foraa modern gaming PC, complete with the RGB LEDs you’d expect in a contemporary rig.

A Mysterious 6502 Apple 2 Simulator

Nice, visual simulators of CPUs such as the 6502 are usually made much later and with more modern tooling than what they simulate. But what if that wasn’t the case? What if a simulator runs on the very hardware it’s simulating?

This is what [Tea Leaves] stumbled upon when he found a mysterious disk with only “APL6502.SIM” on it. [Tea Leaves] demonstrates the simulator with a basic 6502 assembly program, revealing an animated, beautiful Apple 2 simulator that actually runs on the Apple 2! The simulator shows all the major components of a 6502 and actually animates the complete data flow of an instruction.

But why is this mysterious? It’s mysterious because – a “hello” program aside – it’s the only thing on the disk! Not so much as a single clue as to where it came from. [Tea Leaves] finds out where it comes from, including incorrectly copied disk images and a revelation at the end.

Video after the break.
Continue reading “A Mysterious 6502 Apple 2 Simulator”

A Turing-Complete CPU In Sunvox? Why Not!

Day-time software engineer and part-time musician, [Logickin,] knows a thing or two about programming the SunVox modular synthesiser and tracker software. Whilst the software is normally used for creating music and sound effects, they decided to really push it, and create the VOXCOM-1610, a functional turing-complete CPU inside SunVox, just for fun.

For those who haven’t come across SunVox before now, this software is a highly programmable visual environment for building up custom synthesisers, piecing signals together to create rhythms — that’s the ‘tracker’ bit — as well as interfacing to input devices such as MIDI and many others. It does look like a lot of fun, but just like CPUs created in Minecraft, just because, this seems to be the first time someone has built one inside this particular music app. The VOXCOM 1610 is a fully functional 10 Hz, 16-bit computer. It boasts 2KB of ROM, 256 bytes of RAM (expandable to 128 KB), and 8 general registers for data exchange between components. If you don’t fancy manually poking bits into the ROM to enter your software, then you’re in luck as [Logickin] has provided an assembler (in Java) that should ease the process a lot. The ABI will look very familiar to anyone who’s ever touched assembler before, although as you’d expect, it is quite light on addressing modes.

Now, all that is needed is for someone to port Doom to this and we’ll have it all. We think that is unlikely to happen. For those who pay attention, we did see one neat SunVox project in the past, which is certainly eye-catching as well as eardrum-bursting.

Thanks to [elbien] for the tip!

DOOM On IPhone OS, On Android

So you want to play some games from the early days of 32-bit iPhone OS that no longer run on recent OS versions? [Hikari-no-yume] wrote a sweet high-level emulator, touchHLE, to do so on modern iOS phones. But maybe you don’t have an iPhone? [Ciciplusplus] has your back. He ported the iPhone OS emulator, written in Rust, to Android, and then ported a version of DOOM that runs on iPhone OS to go with it.

[Ciciplusplus] also made a video (embedded below) where he documented the trials and tribulations of porting Rust code to the Android platform – an intensely Java environment. It doesn’t sound like it was at all trivial. Of course, this couldn’t have been accomplished without [Hikari-no-yume]’s original work on touchHLE, which was made essentially to fulfill [Hikari-no-yume]’s long-time obsession with the game Super Monkey Ball.

So for now, touchHLE can boast the ability to run a few old 32-bit games on Android and desktop operating systems. What other games from the first years of gaming on smart phones (and iPods) do you need to see ported? Get involved in the project if you’ve got an itch you need scratched.

Continue reading DOOM On IPhone OS, On Android”